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The classical embeddability problem asks
whether a given stochastic matrix T , describ-
ing transition probabilities of a d-level sys-
tem, can arise from the underlying homogeneous
continuous-time Markov process. Here, we in-
vestigate the quantum version of this problem,
asking of the existence of a Markovian quantum
channel generating state transitions described by
a given T . More precisely, we aim at character-
ising the set of quantum-embeddable stochastic
matrices that arise from memoryless continuous-
time quantum evolution. To this end, we de-
rive both upper and lower bounds on that set,
providing new families of stochastic matrices
that are quantum-embeddable but not classically-
embeddable, as well as families of stochastic ma-
trices that are not quantum-embeddable. As a
result, we demonstrate that a larger set of tran-
sition matrices can be explained by memoryless
models if the dynamics is allowed to be quantum,
but we also identify a non-zero measure set of
random processes that cannot be explained by ei-
ther classical or quantum memoryless dynamics.
Finally, we fully characterise extreme stochastic
matrices (with entries given only by zeros and
ones) that are quantum-embeddable.

1 Introduction
In 1937, a Finnish mathematician, Gustav Elfving, asked
a fundamental question concerning the nature of random-
ness [1]. Namely, he wondered which of the observed ran-
dom transitions between discrete states of a given system
can be explained by the underlying continuous memory-
less process. More precisely, consider a system with d dis-
tinguishable states and initially prepared in some state j,
which then evolves for a time tf , and after that the sys-
tem is measured and found in some state i. Repeating
this experiment many times and recording the frequency
of observed output states for all input states, one recov-
ers a transition matrix T with matrix elements Tij de-
scribing the probabilities of state transitions from j to i.
Elfving then asked, whether the random process observed
at time tf and described by T can arise from a homo-
geneous continuous-time Markov process, i.e., a process
acting continuously and identically at all times t ∈ [0, tf ],
and such that the evolution of the system at each in-

finitesimal moment in time depends only on the current
state of the system (and not on its history). Formally,
this corresponds to the following embedding problem [2]:
given a transition matrix T , one wants to know whether
there exists a family of transition matrices eLt continu-
ously connecting the identity at t = 0 with T = eLtf at
t = tf . Here, L is a time-independent Markov generator
(also known as the rate matrix) that is a d×d matrix with
non-negative off-diagonal entries and columns summing
to zero [2].

Despite decades of efforts, complete solutions to the
classical embeddability problem described above have
only been found for 2 × 2 [3], 3 × 3 [4–6], and very re-
cently also for 4×4 matrices [7]. Nevertheless, the subset
of embeddable matrices of general size d can be bounded
within the set of all d×d stochastic matrices, because var-
ious necessary conditions for embeddability were found,
among them the following one [8]:

d∏
i=1

Tii ≥ det T ≥ 0. (1)

Thus, every continuous-time random process that results
in a transition matrix T failing to satisfy the above con-
ditions must necessarily use memory effects1. In other
words, observing such a random process T only at a dis-
crete moment in time, we can infer that the underlying
dynamics cannot be explained with a memoryless model.

In this paper we ask: how the non-existence of a mem-
oryless model explaining a given T is affected if we drop
the implicit assumption that the underlying continuous
dynamical process is classical and instead allow for a
quantum evolution? This means that instead of occu-
pying one of the well-defined d states, the investigated
system can be in any coherent superposition of these d
states, and the general evolution consists of both classi-
cal stochastic jumps and quantum coherent transitions.
For the simplest example that we illustrate in Fig. 1, con-
sider a spin-1/2 particle that is initially prepared in one
of the two perfectly distinguishable states, either a spin-
up state |↑⟩ or a spin-down state |↓⟩. As in the classical
scenario, it is then left to evolve for a time tf , after which
the orientation of its spin is measured, the procedure is

1This holds even if we drop the time-homogeneity assumption,
because Eq. (1) is a necessary condition for embeddability in the
stronger sense, when the Markov generator is allowed to be time-
dependent.

1



t = 0 t = tf

T↑↑

T↑↓

T↓↑

T↓↓

Figure 1: Transition matrices arising from memoryless quan-
tum dynamics. A two-level quantum system prepared initially in
one of two perfectly distinguishable states, |↑⟩ or |↓⟩, undergoes
an unknown evolution for time tf after which it is measured in
the {|↑⟩, |↓⟩} basis. The conditional outcome probabilities, i.e.,
probabilities Tij of observing |i⟩ given that the system started
in |j⟩ for i, j ∈ {↑, ↓}, form a transition matrix T . One can
then ask which observed T can be explained by the underlying
time-homogeneous memoryless quantum dynamics. The central
problem we investigate in this paper is the generalisation of this
question to d-dimensional quantum systems.

repeated and the outcome frequencies yield the transition
matrix T . The crucial difference is that the evolution be-
tween time 0 and tf is quantum, and we want to ask
whether a given T can arise from a memoryless quantum
dynamics.

This problem of quantum-embeddability of stochastic
matrices was recently introduced in Ref. [9], where the
authors focused on a more general concept of memory-
less quantum dynamics that is time-inhomogeneous, i.e.,
the generator of the evolution may change in time. Here,
in the spirit of the original Elfving problem, we want to
characterise the set of transition matrices that can arise
from the underlying homogeneous continuous-time quan-
tum Markov process. Our main results consist of lower
and upper bounds on the set of quantum-embeddable
stochastic matrices, i.e., we identify both a new fam-
ily of stochastic matrices that are quantum-embeddable
(but not classically-embeddable) and a family of stochas-
tic matrices that are not quantum-embeddable (neither
classically-embeddable). As a result, we find a whole
class of random processes that cannot arise from either
a classical or quantum memoryless dynamics. Therefore,
observing such a process only at a discrete moment in
time, we can infer that the underlying dynamics is non-
Markovian.

The paper is structured as follows. First, in Sec. 2,
we provide the mathematical background for our studies
and formally state the investigated problem. Then, in
Sec. 3, we present and discuss our main results concern-
ing families of transition matrices that are not quantum-
embeddable, and those that are. Section 4 contains step-
by-step derivations of our results together with interme-
diate results that may be of independent interest. Fi-
nally, Sec. 5 contains conclusions and an outlook for fu-
ture work.

2 Setting the scene
A state of a d-dimensional quantum system is described
by a d× d density matrix ρ that is positive and has unit
trace. A general open quantum evolution of such a sys-
tem is given by a quantum channel E , which is a lin-
ear map between d × d matrices that is completely pos-
itive and trace-preserving. A channel E is called time-
independent embeddable (Markovian) if and only if it is
in the closure of the maps of the following form [10]:

Et = eLt, (2)

where t ∈ R+ denotes a finite time and L is the Lindblad
generator satisfying [11, 12]

L(·) = i[·, H] + Φ(·) − 1
2{Φ∗(1), ·}. (3)

Above, H is Hermitian and physically corresponds to the
Hamiltonian of the system that induces the closed uni-
tary dynamics, Φ is a completely positive (but not nec-
essarily trace-preserving) map that physically describes
dissipative open dynamics due to interactions with the
environment, {·, ·} is the anticommutator and Φ∗ denotes
the dual of Φ, i.e.,

∀A,B : Tr (AΦ(B)) = Tr (Φ∗(A)B) . (4)

To be physically meaningful, L is assumed to have a finite
operator norm. Thus, the assumption of closure is nec-
essary in order to include in the set of Markovian chan-
nels the non-invertible channels that can be generated by
Markovian dynamics with arbitrary precision.

A classical action T of a quantum channel E is de-
fined by a stochastic matrix describing transitions in-
duced by E in a given basis {|i⟩}di=1:

Tij := ⟨i| E(|j⟩⟨j|) |i⟩ . (5)

The set of all d×d stochastic matrices (i.e., matrices with
non-negative entries and columns summing to identity)
will be denoted by Td. Now, the central notion inves-
tigated in this paper is the following time-homogeneous
version of quantum-embeddability [9].

Definition 1 (Quantum-embeddable stochastic matrix).
A stochastic matrix T is quantum-embeddable if it is a
classical action of some Markovian quantum channel, i.e.,
if, for any δ > 0, there exist a Lindbladian L and a finite
time tf such that

max
i,j

∣∣Tij −
〈
i
∣∣ eLtf (|j⟩⟨j|)

∣∣i〉 ∣∣ ≤ δ. (6)

The above definition generalises to the quantum set-
ting the set of classical limit-embeddable stochastic ma-
trices introduced in Ref. [13]. We will denote the set
of d× d quantum-embeddable stochastic matrices by Qd

and its complement within the set of d×d stochastic ma-
trices by Qc

d. Similarly, the set of classically-embeddable
stochastic matrices described in the introduction and its
complement will be denoted by Cd and Ccd. Note that
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both sets Cd and Qd are, by definition, closed. Moreover,
it is clear that Cd ⊂ Qd, since classical processes form
a particular subset of quantum processes. This can be
shown explicitly by noting that a classically-embeddable
T = eLtf is a classical action of a Markovian quantum
channel eLtf with a Lindblad generator defined through
Eq. (3) with H = 0 and

Φ(·) =
d∑

i,j=1
|Lij | |i⟩⟨j| (·) |j⟩⟨i| . (7)

On the other extreme, we can choose Φ = 0 and by vary-
ing H generate all unitary channels. Thus, Ud ⊂ Qd,
with Ud denoting the set of d × d unistochastic matri-
ces [14], i.e., matrices T such that Tij = |Uij |2 for some
unitary matrix U . Since there exist matrices in Ud but
not in Cd (e.g., a non-trivial permutation matrix), and
there exists matrices in Cd and not in Ud (e.g., a matrix
T with Tij = δik for any fixed k), Qd is a strict superset
of both Ud and Cd. This lower bounds the set Qd within
the set Td, and the aim of this paper is to improve this
bound, as well as to upper bound Qd, i.e., to identify
which stochastic matrices are not quantum-embeddable.

3 Results and discussion
Our first result identifies a subset of 2 × 2 matrices that
are not quantum-embeddable.

Theorem 1. Consider a 2 × 2 stochastic matrix T ,

T =
(

a 1 − b
1 − a b

)
. (8)

If a ≤ 10−6 and f(a) (2 − f(a)) < b < 1 − g(a), then
T /∈ Q2. Here,

f(a) = 2
√

2a0.25 +
√
a(2 − a) + a0.9 (9a)

+ 0.01(4
√
a+ a0.45)

1 − (8
√
a+ a0.45)

+ 2
√

8
√
a+ a0.45,

g(a) = (2 − a)(2a+ a0.1), (9b)

so that both these functions vanish when a → 0. The
same result holds if we swap a for b.

The proof of the above theorem can be found in
Sec. 4.2, whereas in Sec. 4.1 we present its simplified
version that only works for a special case of a = 0 (or
b = 0 after swapping a for b). Here, based on numeri-
cal investigations, we note that the bounds on a and b
from Theorem 1 are quite loose and most probably can
be significantly improved. More precisely, numerically
optimising over all Lindblad evolutions of a qubit system
(see Appendix A for details), we observe that the numer-
ical bounds on a and b differ by more than four orders
of magnitudes from the analytic bounds stated in Theo-
rem 1. We illustrate this in Fig. 2, where in panel (a) the
set T2 is presented, together with its subsets C2 (char-
acterised analytically in Ref. [3]) and Q2 (characterised
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Figure 2: Memoryless dynamics of a two-level system. Ev-
ery 2 × 2 stochastic matrix representing the evolution of a two-
level system (see Eq. (8)) can be represented as a point inside
a square (a, b) ∈ [0, 1] × [0, 1]. (a) The upper-right red region
contains classically-embeddable matrices, whereas the bottom-
left blue region contains those quantum-embeddable matrices
that are not classically-embeddable. For transitions described
by matrices belonging to the white region (left or below the
blue bounding curves obtained through numerical optimisations)
there are no memoryless models (classical or quantum) explaining
them. (b) Comparison of the analytical and numerical bound for
the set Q2: above the top blue curve all matrices are quantum-
embeddable, whereas below the bottom red curve no matrices
are quantum-embeddable. The real boundary between Q2 and
Qc

2 lies somewhere between the two curves.

numerically here); whereas in panel (b) we compare the
numerical and analytic bounds.

Theorem 1 shows that Qc
2 occupies a non-zero vol-

ume within the set T2 and thus upper bounds Q2 (note
that this is contrary to the case of time-dependent gen-
erators, where the entire T2 can be generated by time-
inhomogeneous quantum Markovian dynamics [9]). Our
second result provides such an upper bound for higher di-
mensional systems. Namely, the following theorem iden-
tifies a family of matrices belonging to Qc

d and so, since
Qc
d is non-empty and open, it shows that Qc

d has a non-
zero measure, which in turn yields an upper bound on Qd.

Theorem 2. Consider a d× d stochastic matrix T . Let
I0 ⊂ {1, · · · , d} be a subset of indices such that T in-
variantly permutes I0. Also, let I1 ⊂ Ic0 denote a subset
of the complementary set of I0, where for any i1 ∈ I1 it
holds that Ti0i1 = 1 for some fixed i0 ∈ I0. Then, T ∈ Qc

d

if there exists an index i such that

∑
i1∈I1

Ti1i = 1. (10)

The proof of the above theorem can be found in
Sec. 4.3, whereas in Fig. 3 we illustrate the sets, states
and transitions appearing in the statement of the theo-
rem to better visualise its content. Here, we will unpack
Theorem 2 by examining the lowest possible dimensions
of d = 3 and d = 4. For d = 3, the structure imposed by
the theorem requires I0 to be one-dimensional. Thus, T
acts trivially on I0 = {i0}, i.e., Ti0i0 = 1. Moreover, I1
also needs to be one-dimensional. For different choices of
i0 and i1, we then obtain that the following six extreme
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i0 i

I1
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Figure 3: Visualisation of Theorem 2. An example of a tran-
sition matrix for a d = 8 level system that is not quantum-
embeddable according to Theorem 2. Solid arrows denote de-
terministic transitions (with probability 1), dotted arrows denote
probabilistic transitions, and a lack of arrows from a given level
means that arbitrary transitions from that level are allowed.

stochastic matrices are not quantum-embeddable:
1 1 0

0 0 1
0 0 0

 ,

1 0 1
0 0 0
0 1 0

 ,

0 0 1
1 1 0
0 0 0

 ,

0 0 0
0 1 1
1 0 0

 ,

0 1 0
0 0 0
1 0 1

 ,

0 0 0
1 0 0
0 1 1

 .

(11)

Therefore, no 3 × 3 transition matrices in the vicinity of
the above matrices can result from time-homogeneous
Markovian quantum dynamics. Taking d = 4 brings
more freedom to construct not only a discrete set of ex-
treme stochastic matrices belonging to Qc

4, but also con-
tinuous families of stochastic matrices in Qc

4 located at
the boundaries of T4. For example, let us fix I0 = {1}
and I1 = {m,n} for different choices of m,n ∈ {2, 3, 4}.
Then, Theorem 2 yields the following three families of
matrices in Qc

4:


1 1 1 0
0 0 0 p
0 0 0 q
0 0 0 0

 ,


1 1 0 1
0 0 p 0
0 0 0 0
0 0 q 0

 ,


1 0 1 1
0 0 0 0
0 p 0 0
0 q 0 0


 , (12)

where p, q are non-negative with p+ q = 1.
Our third result provides a novel lower bound on Qd,

i.e., it gives constructions of matrices in Qd that were not
previously known to belong to Qd. We already mentioned
that both Cd and Ud, the sets of classically-embeddable
and unistochastic matrices, form the subsets Qd. Clearly,
if T can be written as T = R1 ⊕R2 such that R1 ∈ Cd1

and R2 ∈ Ud2 , then T is a quantum-embeddable ma-
trix which does not necessarily lie in Cd or Ud. More-
over, knowing the set of quantum-embeddable stochas-
tic matrices of lower dimensions d1 and d2, their direct
sum gives a quantum-embeddable matrix in a higher di-
mension d = d1 + d2. However, as the following theorem
shows, one can also non-trivially apply the knowledge of
lower-dimensional quantum-embeddable matrices to con-
struct higher-dimensional matrices in Qd.

Theorem 3. Let R ∈ Qd′ reside in a diagonal block of
a stochastic matrix T of dimension d ≥ d′. Then, T is
quantum-embeddable if its columns outside those occupied
by R are copies of the columns occupied by R.

We present a constructive proof of the above theorem
in Sec. 4.4. In order to discuss its scope here, without
loss of generality we restrict ourselves to the case where
R lives in the corner of T . Thus, T has the following
block form:

T =
(
R S

0 B

)
, (13)

where R ∈ Qd′ and 0 denotes a rectangular matrix of
zeros (which must be the case because R is by definition
stochastic). Theorem 3 states that if each column of S
is a copy of some column of R (so B = 0), then T is
quantum-embeddable. While this theorem only yields
a subset of quantum-embeddable matrices lying on the
boundaries of the set of stochastic matrices, when one
restricts to extreme points (i.e., stochastic matrices with
entries equal to either 0 or 1) then it can be shown that
Theorems 2 and 3 characterise two complementary sets.
This means that a given extreme stochastic matrix is
either not quantum-embeddable structured according to
Theorem 2, or it is quantum-embeddable and of the form
given by Theorem 3. This result is summarised in the
following corollary.

Corollary 4. An extreme stochastic matrix T of size d
is quantum-embeddable if and only if it includes a per-
mutation as a diagonal block, and its other columns are
given by copies of the columns of this permutation.

The proof of the above corollary is presented in
Sec. 4.5. Knowing the necessary and sufficient condi-
tion for an extreme stochastic matrix to be quantum-
embeddable, one can investigate how their number
changes with the dimension. For d = 2, all four
extreme points (two permutations and two non-trivial
classically-embeddable matrices sending both states to
either 0 or 1) are quantum-embeddable. For d = 3,
among the 27 extreme stochastic matrices the 6 matri-
ces specified by Theorem 2 and given in Eq. (11) are
not quantum-embeddable. The remaining ones include
6 unistochastic matrices (permutations), 9 classically-
embeddable matrices (3 completely contractive maps on
the whole space and 6 maps completely contractive on a
two-dimensional subspace with a fixed orthogonal sub-
space), and 6 quantum-embeddable matrices with the
structure given by Theorem 3, which are neither in C3
nor U3. Generally, for dimension d, the number n(d) of
quantum-embeddable matrices, out of dd extreme points,
is given by

n(d) :=
d∑

m=1

(
d

m

)
m! md−m =

d∑
m=1

d!
(d−m)!m

d−m, (14)

where, according to Corollary 4, one counts all the ways
of inserting an m × m permutation matrix (with bino-
mial factor counting all possible placements inside a ma-
trix of size d and m! accounting for different permutation
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matrices) times the number of choices for the remaining
(d−m) columns (each of them must be a copy of one of
the m columns of the permutation matrix, hence md−m

choices). As a result, the ratio of the number of extreme
and not quantum-embeddable stochastic matrices to all
extreme stochastic matrices, 1−n(d)/dd, approaches one
as d increases.

4 Derivation of results
In this section, we will first present a simplified proof of
Theorem 1, which works only for a special case of a = 0
(or b = 0). This will serve as an illustration of the main
ideas and intuitions behind the full proof of Theorem 1
that follows. In fact, we will prove a slightly stronger
result concerning qubit channels that are Markovian. We
will then proceed to proving Theorems 2 and 3 for higher-
dimensional quantum systems. Finally, we will explain
how Corollary 4 follows from these theorems.

4.1 Simplified proof of Theorem 1
We start by noting that a Markovian channel is infinitely
divisible [15]. By definition, an infinitely divisible chan-
nel can be written as

E = (E1/n)n, (15)

for any n ∈ N with E1/n being a quantum channel itself.
Furthermore, to prove our point we need the following
two lemmas.

Lemma 5 (Theorem 4.9 of Ref. [16]). The image of a
qubit channel E contains zero, one, two or all pure states.
In the last case, E is a unitary channel.

Lemma 6. If a qubit channel sends two distinct pure
states into a single pure state |ψ⟩⟨ψ|, then it sends all
states to |ψ⟩⟨ψ|.

Proof. Note that if two distinct pure states are mapped
to the same pure state |ψ⟩⟨ψ|, then their convex combina-
tion, which is a full rank state, is also mapped to |ψ⟩⟨ψ|.
It is, however, known that a full rank state is sent by
a channel to a pure state if and only if the entire state
space is mapped to that pure state [16].

We will now prove a result that directly yields a version
of Theorem 1 restricted to 2×2 stochastic matrices lying
on the boundaries of the set T2, i.e., such that a = 0 and
0 < b < 1, or b = 0 and 0 < a < 1.

Proposition 7. If a pure state |ψ⟩⟨ψ| exists in the image
of a Markovian qubit channel E, then one of the following
holds:

1. E is unitary.

2. E is a non-unital map with |ψ⟩ being its fixed point.

3. E is dephasing with respect to the basis {|ψ⟩, |ψ⊥⟩},
implying that both of them are fixed points of the
channel.

Before proceeding with the proof, we emphasise that
since non-unital qubit channels have only one fixed state,
the second case above implies that the image of En con-
verges to |ψ⟩⟨ψ| as n increases.

Proof. Without loss of generality, let |0⟩ be the pure state
that is mapped to |ψ⟩, i.e, E(|0⟩⟨0|) = |ψ⟩⟨ψ|. The proof
consists of two separate parts. First, we will assume that
|ψ⟩ ≠ |0⟩ and show that either Case 1 or Case 2 holds,
with the latter possible only for a maximally contrac-
tive E , i.e., E(ρ) = |ψ⟩⟨ψ| for all ρ. Then, we will consider
|ψ⟩ = |0⟩ and prove that only Cases 2 and 3 are possible.

Assume |ψ⟩ ≠ |0⟩ and note that, since E is Marko-
vian, Eq. (15) holds for it. In particular, take n = 3
and for i ∈ {1, 2, 3} let ρi := E i/3(|0⟩⟨0|) be the image of
|0⟩⟨0| when acted on by the cube root map once, twice,
or thrice. Now, assume it is not the case that ρ1 and ρ2
are both pure. Thus, for at least one i ∈ {1, 2}, we have

ρi = λi |ϕi⟩⟨ϕi| + (1 − λi)
∣∣ϕ⊥
i

〉〈
ϕ⊥∣∣ , (16)

with λi ∈ [1/2, 1). Recalling that, by assumption, we
have ρ3 = |ψ⟩⟨ψ|, we then get that E(3−i)/3 sends ρi to
the pure state |ψ⟩⟨ψ|:

|ψ⟩⟨ψ| = λiE
3−i

3 (|ϕi⟩⟨ϕi|) + (1 − λi)E
3−i

3 (
∣∣ϕ⊥
i

〉〈
ϕ⊥
i

∣∣). (17)

For the above to hold, we need

E
3−i

3 (|ϕi⟩⟨ϕi|) = E
3−i

3 (
∣∣ϕ⊥
i

〉〈
ϕ⊥
i

∣∣) = |ψ⟩⟨ψ| . (18)

However, according to Lemma 6, this means that for at
least one i ∈ {1, 2} the map E(3−i)/3 is maximally con-
tractive. Given infinite divisibility of E , this implies that
the maps E1/3 and E2/3 do not have any other point but
|ψ⟩⟨ψ| in their image, contradicting the assumption that
ρ1 and ρ2 are not both pure. Thus, it is only possible to
have ρi =: |ψi⟩⟨ψi| pure for any i.

In what follows, we will discuss all possible scenarios
that may happen depending on the distinctness of the
states |ψi⟩⟨ψi|.

1. If all |ψi⟩⟨ψi|’s are distinct, then the cube root map
E1/3 has three pure states in its image, implying it
is a unitary map by Lemma 5. Therefore, E is also
unitary.

2. If two successive states are the same, i.e., if
|ψ1⟩⟨ψ1| = |ψ2⟩⟨ψ2| or |ψ2⟩⟨ψ2| = |ψ3⟩⟨ψ3|, then
|ψ3⟩⟨ψ3| = |ψ⟩⟨ψ| is a fixed point of E1/3 and, conse-
quently, of E . Since E sends both |0⟩⟨0| and |ψ⟩⟨ψ| to
the latter, it is maximally contractive by Lemma 6.
Note that this also means that E1/3 is maximally
contractive and all the |ψi⟩⟨ψi|’s are equal.

3. Finally, we prove by contradiction that it is not pos-
sible to have |ψ1⟩⟨ψ1| = |ψ3⟩⟨ψ3| with |ψ2⟩⟨ψ2| being
distinct. First, note that since

E1/3(|0⟩⟨0|) = E1/3(|ψ2⟩⟨ψ2|) = |ψ3⟩⟨ψ3| , (19)

we need |ψ2⟩⟨ψ2| = |0⟩⟨0|, as otherwise two distinct
pure states would be mapped to the same pure state
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and, by Lemma 6, this would mean all |ψi⟩⟨ψi|’s are
equal, contradicting that |ψ2⟩⟨ψ2| is distinct. This,
however, means that

E2/3(|0⟩⟨0|) = |0⟩⟨0| , (20a)
E2/3(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| . (20b)

Having two distinct fixed states, E2/3 has to be uni-
tal which, in turn, implies that its fixed pure states
are orthogonal, i.e., |ψ⟩⟨ψ| = |1⟩⟨1|. This means E2/3

is a dephasing map and any power of a dephasing
map is also a dephasing map. Consequently, E is
dephasing with |0⟩⟨0| as its fixed state, and thus it
cannot send it to a distinct state |ψ⟩⟨ψ|, leading to
a contradiction.

With the above discussion, we conclude that if
|ψ⟩⟨ψ| ≠ |0⟩⟨0|, then E is either unitary or completely con-
tractive to |ψ⟩⟨ψ|, which completes the first part of the
proof.

For the second part, assume |0⟩⟨0| = |ψ⟩⟨ψ|. Thus
E(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| means that |ψ⟩⟨ψ| is a fixed point of E .
If E is non-unital, we already have Case 2. Otherwise,
a unital channel E with a fixed point |ψ⟩⟨ψ| has to have
|ψ⊥⟩⟨ψ⊥| as a fixed point as well. This proves that E
is dephasing in the basis {|ψ⟩, |ψ⊥⟩} and completes the
proof.

The above proposition enables us to directly show that
all stochastic matrices in Fig. 2 on the boundaries with
a = 0 and b = 0 (excluding the end points) belong to Qc

2.
To see that, let a = 0 and note that such a stochastic ma-
trix is a classical action of some quantum channel E that
sends |0⟩ to |1⟩, i.e., E(|0⟩⟨0|) = |1⟩⟨1|. Since |0⟩ is then
not a fixed point of E , Proposition 7 tells us that for E
to be Markovian, it has to be either a unitary channel
or a maximally contractive channel into |1⟩⟨1|. A unitary
map sending |0⟩ to |1⟩ has to send the latter state to the
former one, meaning that b = 0. On the other hand, if E
is maximally contractive, then it sends |1⟩ to itself, and
thus b = 1. The proof for the boundary with b = 0 is
analogous.

While the above reasoning already shows that there
exist some stochastic matrices that are not quantum-
embeddable for d = 2 (which, given Qc

2 is an open set,
proves that Qc

2 is not of measure zero), one wonders how
far away from the boundaries can such non-embeddable
matrices exist, i.e., how big the deviation of a or b from
zero can be to still get matrices that are not quantum-
embeddable. Intuitively, it is expected that for a suffi-
ciently small deviation, a Markovian E should be close to
either a unitary map or a completely contractive one. In
what follows, we prove this intuition.

4.2 Proof of Theorem 1
In order to prove Theorem 1, we start by introducing the
notation for trace distance,

D (ρ, σ) := 1
2∥ρ− σ∥1, (21)

and its upper and lower bounds [17, 18]

1−Tr (ρσ)−M(ρ)M(σ)≤ D (ρ, σ) ≤
√

1 − F (ρ, σ), (22)

where M(ρ) =
√

1 − Trρ2, and F (ρ, σ) = (Tr|√ρ
√
σ|)2

denotes the Uhlmann fidelity. Additionally, we will de-
note by

ρψ(t) := eLt(|ψ⟩⟨ψ|) = eLt(ψ) (23)
the evolved state of ψ := |ψ⟩⟨ψ| after time t under Lind-
bladian L. Furthermore, we define an ϵ-purity-preserving
map as follows.

Definition 2. A dynamical map eLt is called ϵ-purity-
preserving on a state |ψ⟩ for some time tf if there exists
a pure state |ψt⟩ for all t ∈ [0, tf ] such that

D (ρψ(t), |ψt⟩⟨ψt|) ≤ ϵ. (24)

Finally, the following lemma will assist us in proving
our main point in this section.

Lemma 8. Assume that a dynamical map eLt is ϵ-
purity-preserving on a state ψ for some time tf , and
denote by ψt a pure state in ϵ-neighbourhood of the
evolved ψ at each moment of time. Then, for all
t1, t2 satisfying t1 + t2 ≤ tf , the largest eigenvalue λ of
ρψt1

(t2) = eLt2(ψt1) is restricted to

λ
(
ρψt1

(t2)
)

≥ 1 − 2ϵ. (25)

Proof. Note that for, any t1 + t2 ≤ tf , we have

D
(
ρψt1

(t2), ψt1+t2
)

≤ D
(
ρψt1

(t2), ρψ(t1 + t2)
)

+D (ρψ(t1 + t2), ψt1+t2)
≤ D (ψt1 , ρψ(t1)) + ϵ ≤ 2ϵ, (26)

where we first used the triangle inequality, and then the
data processing inequality, together with the assumption
of ϵ-purity preserving property. The proof is completed
by using the fact that, for any state ρ, the largest eigen-
value λ satisfies

1 − λ = min
|ξ⟩

D (ρ, |ξ⟩⟨ξ|) , (27)

where the minimum is over all pure states |ξ⟩.

We will now present and prove the main technical re-
sult of this section, from which the proof of Theorem 1
follows almost immediately. Informally, it states that if
a dynamical map sends |0⟩ approximately to |1⟩, then
either |1⟩ goes approximately to |0⟩, or every state goes
approximately to |1⟩.

Theorem 9. Consider a qubit dynamical map eLt

that, at some time tf , sends the state |0⟩ to the ϵ-
neighbourhood of its orthogonal state |1⟩, i.e.,

D
(
eLtf (|0⟩⟨0|) , |0⟩⟨0|

)
≥ 1 − ϵ. (28)

Then, for any ϵ ≤ 10−6, one of the following two inequal-
ities hold:

D
(
eLtf (|1⟩⟨1|) , |1⟩⟨1|

)
≥ 1 − f(ϵ), (29a)

D
(
eLtf (|ξ⟩⟨ξ|) , |1⟩⟨1|

)
≤
√
g(ϵ), (29b)
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where |ξ⟩ is any pure state, and f and g are the functions
specified by Eqs. (9a)-(9b). Moreover, the equalities hold
only if ϵ = 0.

Proof. Let the spectral decomposition of the state |0⟩
evolved under eLt at each t ∈ [0, tf ] be given by

ρ0(t) = λt |ψ0(t)⟩⟨ψ0(t)| + (1−λt) |ψ1(t)⟩⟨ψ1(t)|, (30)

such that λt ≥ 1/2 denotes the largest eigenvalue. The
proof will consist of two parts. First, we will assume

∀t ∈ [0, tf ] : D (ρ0(t), |ψ0(t)⟩⟨ψ0(t)|) = 1−λt ≤ ϵ0.9, (31)

and prove that it implies Eq. (29a). Then, we will show
that when this assumption does not hold, we obtain
Eq. (29b).

As proved in Lemma 8, the ϵ0.9-purity-preserving as-
sumption in Eq. (31) implies that for any t, t′ ∈ [0, tf/2],
the evolution eLt′ is 2ϵ0.9-purity-preserving on a state
|ψ0(t)⟩. In what follows, we will employ the Stinespring
dilation of eLt′ on states |0⟩, |1⟩, and |ψ0(t)⟩ to prove the
first part. Note that, in the Stinespring picture, to realise
a quantum channel acting on a d-dimensional system,
it is enough to take the environment of dimension d2.
Therefore, we will restrict ourselves to the environments
of dimension 4.

Denote by U(t′) the unitary operator in a Stinespring
dilation of the map eLt′ , so that

|Ψ0(t′)⟩ := U(t′)|0⟩|0⟩ =
√
λt′ |ψ0(t′)⟩|r0(t′)⟩ (32a)

+
√

1 − λt′ |ψ1(t′)⟩|r1(t′)⟩,
|Ψ1(t′)⟩ := U(t′)|1⟩|0⟩ (32b)

=
1∑
i=0

3∑
j=0

sij(t′)|ψi(t′)⟩|rj(t′)⟩,

|Ψψ0(t)(t
′)⟩ := U(t′)|ψ0(t)⟩|0⟩ (32c)

=
1∑
i=0

3∑
j=0

fij(t, t′)|ψi(t′)⟩|rj(t′)⟩,

where all the states are written in the Schmidt basis
of |Ψ0(t′)⟩. Note that for m = {0, 1, ψ0(t)},

ρm(t′)=eLt′(|m⟩⟨m|)=Tr2(|Ψm(t′)⟩⟨Ψm(t′)|) . (33)

Now, in Appendix B, we show that the ϵ0.9-purity-
preserving assumption bounds the entanglement of the
states |Ψ0(t′)⟩ and |Ψψ0(t)(t′)⟩ for any t, t′ in [0, tf/2]. We
also show that this implies that |s10| becomes the domi-
nant coefficient. More precisely, we prove in Appendix B
that for any ϵ ≤ 10−6 we have

|s00(t′)| ≤
√
ϵ0.9, (34a)

|s10(t′)| ≥ 1 − 4
√
ϵ. (34b)

Moreover, the equality holds in the second equation
above only if ϵ = 0. Since s10(t′) is the coefficient of
|ψ1(t′)⟩|r0(t′)⟩, being the leading coefficient it implies
that any superposition of |Ψ0(t′)⟩ and |Ψ1(t′)⟩ is almost

a product state. This, in turn, has two consequences.
First, any pure state remains almost pure under eLt′ at
any t′ ≤ tf/2 for sufficiently small ϵ. Second, the evo-
lution is also ϵ-orthogonality-preserving, i.e., it preserves
the orthogonality of any two initially orthogonal states,
up to a function of ϵ which we introduce in the following.

To prove the above two points, we apply the map eLt′

on two initially pure orthogonal states |υ⟩ = b|0⟩ + b⊥|1⟩
and |υ⊥⟩ = b∗

⊥|0⟩ − b∗|1⟩. Employing the same notation
as in Eqs. (32a)-(32c), for m = {υ, υ⊥} we get

|Ψm(t′)⟩ := U(t′)|m⟩|0⟩ (35)
= ∥χ̃m(t′)∥·|χm(t′)⟩|r0(t′)⟩+∥Γ̃m(t′)∥·|Γm(t′)⟩,

where the single party state |χm(t′)⟩ = |χ̃m(t′)⟩/∥χ̃m(t′)∥
for m = {υ, υ⊥} is the normalised form of

|χ̃υ(t′)⟩=(b
√
λ+b⊥s00)|ψ0(t′)⟩+b⊥s10|ψ1(t′)⟩, (36a)

|χ̃υ⊥(t′)⟩=(b∗
⊥

√
λ−b∗s00)|ψ0(t′)⟩−b∗s10|ψ1(t′)⟩. (36b)

The bipartite state |Γm(t′)⟩ = |Γ̃m(t′)⟩/∥Γ̃m(t′)∥ of the
system and environment, for both m = {υ, υ⊥}, con-
tains the remaining terms in the expansion of the state
|Ψm(t′)⟩ in the basis {|ψi(t′)⟩|rj(t′)⟩}. Note that, by def-
inition ⟨Γm(t′)|χm(t′) r0(t′)⟩ = 0, which implies

∥Γ̃m(t′)∥2 = 1 − ∥χ̃m(t′)∥2 for m ∈ {υ, υ⊥}. (37)

Using the bounds from Eqs. (31) and (34a)-(34b), one
can show that

∥χ̃m(t′)∥2 ≥ 1 − (8
√
ϵ+ ϵ0.45). (38)

Moreover, ρm(t′) = eLt′(|m⟩⟨m|) for m = {υ, υ⊥} is ob-
tained from |Ψm(t′)⟩ through Eq. (33).

Now, the proof of both ϵ-purity and ϵ-orthogonality of
any ρυ and ρυ⊥ is straightforward. For the first, we have
the following bound on the largest eigenvalue η of ρm(t′):

η ≥ ⟨χm(t′)|ρm(t′)|χm(t′)⟩ = F (χm(t′), ρm(t′))

≥
∣∣⟨χm(t′) r0(t′)|Ψm(t′)⟩

∣∣2 = ∥χ̃m(t′)∥2

≥ 1 − (8
√
ϵ+ ϵ0.45), (39)

where the first inequality is based on the fact that the
largest eigenvalue of a state is its maximum expectation
value with respect to all states, the second is Uhlmann’s
theorem stating that the fidelity is the maximum over-
lap between all purifications, and the last one is because
of Eq. (38). On the other hand, for orthogonality the
following is obtained (below we drop t′ for convenience):

D (ρυ, ρυ⊥) ≥ D (χυ, χυ⊥) −D (ρυ, χυ) −D (ρυ⊥ , χυ⊥)

≥
√

1 − |⟨χυ|χυ⊥⟩|2 −
√

1 − F (χυ, ρυ)

−
√

1 − F (χυ⊥ , ρυ⊥)

≥ 1 − 0.01(4
√
ϵ+ ϵ0.45)

1 − (8
√
ϵ+ ϵ0.45)

− 2
√

8
√
ϵ+ ϵ0.45

=: 1 − h(ϵ), (40)
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where we first used the triangle inequality, then the defi-
nition of the trace distance for pure states and its up-
per bound from Eq. (22), and for the last inequality
Eqs. (36a)-(36b), (38) and (39) were employed. We also
used the fact that through Eqs. (36a)-(36b) and (38), one
has √

1 − |⟨χυ|χυ⊥⟩|2 ≥ 1 − 0.01|⟨χυ|χυ⊥⟩| (41)

for any ϵ ≤ 10−6.
Up until now, using the assumption from Eq. (31), we

proved that the map eLt′ with t′ ≤ tf/2 almost preserves
the orthogonality of all initially orthogonal pure states.
This implies that, for sufficiently small ϵ, the map eLt′

is close to a unitary channel. Therefore, applying the
map two times is also close to a unitary channel. More
precisely, for any time t in [0, tf ],

D (ρ0(t), ρ1(t)) ≥ D
(

eL t
2 (ψ0(t/2)), eL t

2 (ψ1(t/2))
)

−D
(
ρ0(t), eL t

2 (ψ0(t/2))
)

−D
(
ρ1(t), eL t

2 (ψ1(t/2))
)

≥ 1 − h(ϵ) −D (ρ0(t/2), ψ0(t/2)) −D (ρ1(t/2), ψ1(t/2))

≥ 1 −
(
h(ϵ) + ϵ0.9 + 2

√
2ϵ 1

4

)
=: 1 − h′(ϵ), (42)

where we used the triangle inequality, and then applied
Eq. (40) and the data processing inequality to get the
second inequality. Finally, the last inequality was ob-
tained using the fact that ψ0(t/2) is the eigenstate of
ρ0(t/2) corresponding to its largest eigenvalue (recall
Eq. (31)), and applying the upper bound from Eq. (22),
while noting that by Uhlmann’s theorem it holds that
F (ρ1(t/2), ψ1(t/2)) ≥ |s10|2. Above equation therefore
enforces

D (ρ1(tf ), |1⟩⟨1|) ≥ D (ρ1(tf ), ρ0(tf )) −D (ρ0(tf ), |1⟩⟨1|)

≥1 −h′(ϵ)−
√
ϵ(2 − ϵ) =: 1−f(ϵ), (43)

with f being defined in Eq. (9a). Here, we also employed
the following

D (ρ0(tf ), |1⟩⟨1|) ≤
√
ϵ(2 − ϵ), (44)

which is a result of Eq. (28) and the upper bound from
Eq. (22). Finally, we note that Eq. (43) gives a non-trivial
bound for any ϵ ≤ 10−6 and is saturated only when ϵ = 0,
which completes the proof of Eq. (29a).

For the second part, where we do not use the assump-
tion on purity from Eq. (31), there exists t⋆ < tf such
that

1
2 ≤ λt⋆ < 1 − ϵ0.9. (45)

Define t̃ := tf − t⋆, as well as

F0 := ⟨1|et̃L (ψ0(t⋆)) |1⟩, F1 := ⟨1|et̃L (ψ1(t⋆)) |1⟩, (46)

so that the fidelity F between ρ0(tf ) and |1⟩⟨1| reads:

F := F (ρ0(tf ), |1⟩⟨1|) = λt⋆F0 + (1 − λt⋆)F1. (47)

Due to the bounds on the dominant eigenvalue in
Eq. (45), if F0 ≤ 1 − 2ϵ(2 − ϵ) or F1 ≤ 1 − ϵ0.1(2 − ϵ),

then F ≤ (1−ϵ)2. However, by the upper bound of trace
distance based on fidelity from Eq. (22), one gets

F = 1−⟨0|ρ0(tf )|0⟩ ≥ D (ρ0(tf ), |0⟩⟨0|)2 ≥ (1 − ϵ)2. (48)

Therefore, we should have both F0 ≥ 1 − 2ϵ(2 − ϵ) and
F1 ≥ 1 − ϵ0.1(2 − ϵ) to achieve the above bound. With
the restriction that ϵ is less than 10−6, none of these
bounds are trivial. For small enough ϵ, this means that
the evolution almost sends both |ψ0(t⋆)⟩ and |ψ1(t⋆)⟩ to
the same pure state. More precisely,

1 − (2 − ϵ)(ϵ+ ϵ0.1/2)

≤ 1
2

(
F [eLt̃ (ψ0(t⋆)) , |1⟩⟨1|] + F [eLt̃ (ψ1(t⋆)) , |1⟩⟨1|]

)
= F

(
et̃L
(

|ψ0(t⋆)⟩⟨ψ0(t⋆)| + |ψ1(t⋆)⟩⟨ψ1(t⋆)|
2

)
, |1⟩⟨1|

)
= F (et̃L

(
|ξ⟩⟨ξ| +

∣∣ξ⊥〉〈ξ⊥
∣∣

2

)
, |1⟩⟨1|)

= 1
2

(
F (et̃L(|ξ⟩⟨ξ|), |1⟩⟨1|) + F (et̃L(

∣∣ξ⊥〉〈ξ⊥∣∣), |1⟩⟨1|)
)
,

(49)

where |ξ⟩ and |ξ⊥⟩ are any two orthogonal states. The
above inequality, together with the facts that fidelity is
less than unity and the dynamics is Markovian, implies
that for all t ≥ t̃ and all |ξ⟩ we have

F (etL(|ξ⟩⟨ξ|), |1⟩⟨1|) ≥ 1 − (2 − ϵ)(2ϵ+ ϵ0.1), (50)

which means that the entire subspace almost collapses to
the neighbourhood of |1⟩⟨1| at tf ≥ t̃. Applying the upper
bound of trace distance based on fidelity in Eq. (22), one
gets

D(eLtf (|ξ⟩⟨ξ|), |1⟩⟨1|) ≤
√

(2 − ϵ)(2ϵ+ ϵ0.1) = g(ϵ), (51)

which completes the proof.

We can now apply the above result to prove Theorem 1.

Proof of Theorem 1. Take any 0 < ϵ ≤ 10−6 and a
stochastic matrix T given by Eq. (8) with a < ϵ and
f(ϵ) (2 − f(ϵ)) < b < 1 − g(ϵ). For such a T to be
quantum-embeddable, there has to exist a dynamical
map eLtf such that

⟨0|eLtf (|0⟩⟨0|)|0⟩ ≤ ϵ, (52a)
f(ϵ) (2 − f(ϵ)) ≤ ⟨1|eLtf (|1⟩⟨1|)|1⟩ ≤ 1 − g(ϵ), (52b)

so that the resulting classical action lies in the imme-
diate neighbourhood of T . Otherwise, one can always
find δ > 0 such that, for any Lindbladian L and time tf ,
Eq. (6) is violated. To see that, we apply the lower bound
on trace distance given in Eq. (22) to Eq. (52a) and get

D
(
eLtf (|0⟩⟨0|), |0⟩⟨0|

)
≥ 1 − ϵ.

Thus, Theorem 9, along with Eq. (22), implies that for
any 0 < ϵ ≤ 10−6 one of the following has to hold

F
(
eLtf (|1⟩⟨1|), |1⟩⟨1|

)
< f(ϵ) (2 − f(ϵ)) , (53a)

F
(
eLtf (|1⟩⟨1|), |1⟩⟨1|

)
> 1 − g(ϵ). (53b)
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Note that in the last equation above, we directly applied
Eq. (50). We conclude that Eqs. (53a)-(53b) contradict
Eq. (52b), which completes the proof.

4.3 Proof of Theorem 2
We now proceed to proving that for systems of arbitrary
dimension d there exist stochastic matrices that are not
quantum-embeddable. This will be achieved by Proposi-
tion 10 followed by the proof of Theorem 2.

Proposition 10. Let two states ρ1 and ρ2 evolve under
Markovian quantum dynamics generated by L, such that
at some time tf > 0 we have

D
(
eLtf (ρ1), eLtf (ρ2)

)
≥ 1 − ϵ. (54)

Then, for any t ≥ 0, the following inequality for the
Hilbert-Schmidt inner product holds

Tr
[
eL(tf +t)(ρ1)eL(tf +t)(ρ2)

]
≤ H(d)⌈ (d4−1)t

tf
⌉
ϵ(2−ϵ), (55)

where
H(d) := (d4 + 1)!

2 dd
4+4. (56)

The proof of the above proposition can be found in Ap-
pendix C. Note that one can always take ϵ small enough
so that Eq. (55) gives a non-trivial bound. We employ
Proposition 10 here to show, by contradiction, that a
stochastic matrix T satisfying the conditions stated in
Theorem 2 is not quantum-embeddable. More precisely,
we will prove that one can always find δ > 0 such that
Eq. (6) does not hold for such T .

Proof of Theorem 2. Assume that a matrix T , satisfy-
ing the requirements stated in Theorem 2, is quantum-
embeddable. Being an invariant permutation on I0
means that for any δ > 0 there exist a Lindbladian L
and time tf such that for any i0 ∈ I0 one can find (not
necessarily distinct) indices j0, k0 ∈ I0 satisfying

⟨i0|eLtf (|j0⟩⟨j0|)|i0⟩ ≥ 1 − δ, (57a)
⟨j0|eLtf (|k0⟩⟨k0|)|j0⟩ ≥ 1 − δ. (57b)

Moreover, there has to exist an index i0 ∈ I0 such that

∀i1 ∈ I1 : ⟨i0|eLtf (|i1⟩⟨i1|)|i0⟩ ≥ 1 − δ, (58a)

∃i ∈ (I0 ∪ I1)c :
∑
i1∈I1

⟨i1|eLtf (|i⟩⟨i|)|i1⟩ ≥ 1 −mδ, (58b)

where m = |I1| is the cardinality of I1. Using the nota-
tion introduced in Eq. (23), Eqs. (57b)-(58b) give

Tr (Πρk0(tf )Π) ≥ 1 − δ, (59a)
Tr (ΠI1ρi(tf )ΠI1) ≥ 1 −mδ, (59b)

where Π = |j0⟩⟨j0| and ΠI1 is the projector onto the sub-
space VI1 = Span{|i1⟩}i1∈I1 . Now, note that, for small
enough δ, while the states ρk0(tf ) and ρi(tf ) are almost
orthogonal, if we apply the map eLtf to these states,

obtaining ρk0(2tf ) and ρi(2tf ), then the resulting states
both will be very close to the state |i0⟩⟨i0|, and therefore
very close to each other. The reason is that the state
|j0⟩⟨j0|, as well as the entire subspace VI1 , collapses to
the close neighbourhood of |i0⟩⟨i0| because of Eqs. (57a)
and (58a) for small enough δ.

However, introducing Π⊥ = 1 − Π, for any t ≤ tf :

D (ρk0(t), ρi(t)) ≥ D (ρk0(tf ), ρi(tf )) ≥
D
(
Πρk0(tf )Π+Π⊥ρk0(tf )Π⊥,Πρi(tf )Π+Π⊥ρi(tf )Π⊥)=

D(Πρk0(tf )Π,Πρi(tf )Π)+D
(
Π⊥ρk0(tf )Π⊥,Π⊥ρi(tf )Π⊥)

≥ 1 − (m+ 1)δ, (60)

where we first used the data processing inequality twice,
and then we employed Eq. (59). The above, due to
Proposition 10, implies

Tr (ρk0(2tf )ρi(2tf ))≤H(d)d
4−1(m+1)δ(2−(m+1)δ). (61)

This upper bound means that the smaller the δ is, the far-
ther the states ρi(2tf ) and ρk0(2tf ) are. This contradicts
the discussion following Eqs. (59a)-(59b) and completes
the proof of Theorem 2.

4.4 Proof of Theorem 3
We now provide a constructive proof of Theorem 3.
Without sacrificing generality, assume that T has the
form given in Eq. (13) and R of dimension d′ is a
quantum-embeddable stochastic matrix acting on the
levels {1, . . . , d′}. Also, for any j > d′, let the column
j of T be a copy of its column ij ≤ d′. Note that this
notation allows for two distinct j, k > d′ to have ij = ik,
meaning that the columns j and k are both the same
copy. In what follows, we show that such a matrix T is
quantum-embeddable, i.e., for any δ there exist a Lind-
bladian L and time tf such that Eq. (6) holds.

Denote by Vd′ the d′-dimensional subspace spanned
by {|i⟩}d′

i=1, by V⊥
d′ = Span{|i⟩}di=d′+1 its orthogonal

subspace, and by ΠVd′ and ΠV⊥
d′

the projectors onto

these subspaces, respectively. Since R is assumed to be
quantum-embeddable, there has to exist a Lindblad gen-
erator LR such that the classical action of eLRtf is arbi-
trarily close to R for some tf . Such a dynamical map can
be chosen to have a trivial action on operators acting on
V⊥
d′ , i.e., LR(X) = 0 if X = ΠV⊥

d′
X ΠV⊥

d′
. Next, consider

a Lindbladian

LS(·) =
∑
j>d′

|ij⟩⟨j| (·) |j⟩⟨ij | − 1
2{ΠV⊥

d′
, ·}. (62)

The Lindbladian LS generates a completely dissipative
dynamics on the subspace V⊥

d′ that eventually sends each
state |j⟩ to |ij⟩. Trivially, it holds that LS(Y ) = 0 if
Y = ΠVd′Y ΠVd′ acts on Vd′ .

Therefore, one infers that the Lindbladian
L = LR + γLS , for sufficiently strong coupling γ ≫ 1,
sends the population of the level |j⟩⟨j| to |ij⟩⟨ij | with ar-
bitrary precision in arbitrarily short time. It is because,
in the limit γ → ∞, this transformation happens exactly
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right at the beginning of the evolution. Henceforth, γ
can be set such that, for any demanded precision 1 − ϵ,
there exists an arbitrarily short time t⋆ ≪ 1 such that

eLt⋆(|j⟩⟨j|) = (1 − ϵ) |ij⟩⟨ij | + ϵξj(t⋆), (63)

where ξj(t⋆) is an arbitrary state. Thus, for the remain-
ing time t̃ = tf − t⋆ ≈ tf the level |j⟩⟨j| undergoes ap-
proximately the same evolution as the state |ij⟩⟨ij |. This
means that at tf they are arbitrarily close, which com-
pletes the proof of Theorem 3.

4.5 Proof of Corollary 4
We will now argue why Corollary 4 is a straightforward
consequence of Theorems 2 and 3. This will be achieved
through the following lemma.

Lemma 11. Let T be an extreme stochastic matrix.
Then, one can always find a set I0 of indices such that
T invariantly permutes I0 and, when Ic0 is non-empty,
there exists i ∈ Ic0 which is sent by T to I0.

Proof. Since T is an extreme stochastic matrix, for any i0
one can define the set Si0 as the largest possible set of
distinct indices obtained by acting with T sequentially on
i0, i.e., Si0 = {i0, i1, . . . , ini0

} where Tmim,i0 = 1 for any
m ∈ {0, 1, . . . , ni0}, while T

ni0 +1
j,i0

= Tj,ini0
= δj,ik for

some k ≤ ni0 . There are two possibilities. If for any i0
we get ik = i0, i.e., Ti0,ini0

= 1, then T is a permutation
and proves the lemma. On the other hand, if there exists
an i0 for which ik ̸= i0, then T is a permutation on
I0 = Sik = {ik, . . . , ini0

} and ik−1 is mapped to Sik ,
which completes the proof.

Proof of Corollary 4. To prove Corollary 4, we note that
since T is assumed to be an extreme stochastic matrix,
through Lemma 11, there always exists I0 which T in-
variantly permutes. If T is a permutation, then it is
quantum-embeddable. If it is not a permutation, then we
can use the notation introduced in the proof of Lemma 11
to show that there exist indices i0 such that ik ̸= i0. For
these indices, there are only two possibilities. Either for
all i0 with ik ̸= i0 we get k = 1, which is the structure
posed by Theorem 3 and gives a quantum-embeddable
map as a result. Or, otherwise, there exists an index i0
such that k ≥ 2, implying that Tik−1,ik−2 = Tik,ik−1 = 1,
where ik ∈ I0. This is the structure given by Theorem 2
and yields a non-quantum-embeddable map.

5 Conclusions and outlook
In this work, we investigated the set of quantum-
embeddable stochastic matrices, i.e., classical state tran-
sition maps that arise from time-homogeneous quan-
tum Markov dynamics. For the dimension d = 2, in
Theorem 1, we provided an analytical description of a
curve that upper bounds the set Q2 of 2 × 2 quantum-
embeddable stochastic matrices (recall Fig. 2). In par-
ticular, our result implies that the set of not quantum-
embeddable matrices Qc

2 has non-zero volume within T2.

For higher dimensions d > 2, we derived non-trivial up-
per and lower bounds on the set Qd. To achieve this,
we bounded a ratio ϵ at which time-homogeneous mem-
oryless quantum channels ϵ-preserve orthogonality of in-
put states (Proposition 10). As a consequence, in Theo-
rem 2, we were able to characterise some elements of Qc

d,
thus upper bounding Qd. Moreover, by mixing dissipa-
tive dynamics and unitary evolution, we constructed a
new class of quantum-embeddable matrices (Theorem 3)
that goes beyond classically-embeddable matrices Cd and
unistochastic matrices Ud, and thus provides a new lower
bound on Qd. Finally, by combining the results from
Theorem 2 and Theorem 3, we comprehensively charac-
terised all extreme stochastic matrices that are quantum-
embeddable (see Corollary 4).

Concerning our technical results, there is still plenty
of room for improvement. First, the numerical investiga-
tion provided in Appendix A shows that the boundary
of Q2 differs from the one derived in Theorem 1 by a
few orders of magnitude. One way to improve the the-
oretical bound could be to prove that the numerically
revealed 4-dimensional family of Lindbladian operators
indeed generates the boundary of the set Q2. Second,
it would be interesting to estimate the volume of Qc

d for
arbitrary d. In Theorem 2, we characterised a particu-
lar type of stochastic matrices belonging to Qc

d and so,
remembering that Qd is closed, one may try to find non-
zero balls of non-quantum-embeddable matrices around
these matrices, and provide lower bound on the volume
of Qc

d by estimating the radius of such balls. Finally, one
might also try to devise a systematic approach to con-
structing new families of quantum-embeddable stochas-
tic matrices, which would yield a lower bound on the set
Qd.

On a more conceptual level, our research reveals the in-
herent advantages offered by quantum dynamics over the
classical dynamics in the context of generating stochastic
processes without using memory. On the one hand, one
could try to relate these advantages to the ones arising in
different frameworks, e.g, to dimensional quantum mem-
ory advantages discussed in Ref. [19] or to unitary simu-
lators of non-Markovian processes analysed in Ref. [20].
On the other hand, it is clear that the observed advan-
tages arise from the fact that quantum systems can evolve
coherently and thus experience interference effects, and
so it would be interesting to quantify the impact of quan-
tum coherence on memory improvements (e.g., how much
coherence is necessary to simulate one additional mem-
ory state). One idea for that would be to investigate
how these improvements behave under decohering noise,
e.g., if on top of the Markovianity condition, we require
quantum channels generating our stochastic transitions
to have a level of noise above some fixed threshold.
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A Numerical optimisation over Marko-
vian qubit channels
We obtained the curve defining the region Q2 in Fig. 2
by verifying if stochastic matrices

T =
(

a 1 − b

1 − a b

)
(64)

defined for (a, b) ∈ [0, 1] × [0, 1] satisfy the condition
in Eq. (6) for some Markovian channel E . The fulfill-
ment of this condition has been checked for δ = 10−4.
For each tested point (a, b), we minimised the expression
maxi,j

∣∣Tij −
〈
i
∣∣ eLt(|j⟩⟨j|)

∣∣i〉 ∣∣ over all Lindblad genera-
tors L of the form shown in Eq. (3) and t > 0. Without
loss of the generality, we parameterised H with a single
variable h ∈ R,

H =
(

cosh sin h
sin h cosh

)
. (65)

The map Φ was chosen by its Choi-Jamio lkowski iso-
morphism in the form JΦ = GG†, where G is a 4 × 4
complex matrix, which introduces additional 32 real pa-
rameters. We carried out the optimisation using the
Nelder-Mead optimisation method with random initial-
isation. The numerical investigation revealed that the
boundary curve in Fig. 2 (b) can be achieved for a partic-
ular choice of H and Φ. We observed that it is sufficient
to consider the Hermitian operation given by the Pauli
X operator, H = σx. Moreover, the map Φ may be de-
fined by a single Kraus operator A, Φ(ρ) = AρA†, such
that A = √

γ |ψo⟩⟨ψi|, where |ψo⟩ = (cos(α), i sin(α)) and
|ψi⟩ = (cos(β), i sin(β)) for α, β ∈ R and γ ∈ R+. This
simplification reduces the number of optimisation param-
eters to α, β ∈ R and γ, t ∈ R+.

B Proof of Eq. (34)
To prove Eq. (34), we will exploit the entanglement of a

2 ×N pure bipartite state |Ω⟩ =
∑1
i=0
∑N−1
j=0 fij |ai⟩|bj⟩,

measured by concurrence [21]:

E(Ω) = 2
√∑
j<k

|f0jf1k − f1jf0k|2 = 2
√
λ(1 − λ), (66)

where λ is an eigenvalue of the marginal state Tr2(Ω).
Moreover, we will make use of the following technical
lemma.

Lemma 12. Let a qubit dynamical map be ϵ-purity-
preserving on a state |0⟩ for some time tf , with ψt be-
ing the pure state in the neighbourhood of ρ0(t) at each
moment of time. Also, consider that this map sends the
quantum state |0⟩ to the ϵ′-neighbourhood of |1⟩ at tf ,
i.e.,

D (ρ0(tf ), |1⟩⟨1|) = D
(
eLtf (|0⟩⟨0|), |1⟩⟨1|

)
≤ ϵ′. (67)

Writing |ψt⟩ = ct|0⟩ + c⊥
t |1⟩, then |c⊥

tf/2| belongs to the
interval [ 1√

2 − (2ϵ+ ϵ′), 1] if 2ϵ+ ϵ′ ≤ 1/
√

2.

Proof. To prove, we note that at t = tf/2

|ctf/2| = D
(
|1⟩⟨1| , ψtf/2

)
≤ D (|1⟩⟨1| , ρ0(tf ))

+D(ρ0(tf ), ρ0(tf/2)) +D(ρ0(tf/2), ψtf/2)
≤ ϵ′ +D(ρ0(tf/2), |0⟩⟨0|) +D(ρ0(tf/2), ψtf/2)
≤ ϵ′ +D

(
ψtf/2, |0⟩⟨0|

)
+ 2D(ρ0(tf/2), ψtf/2)

≤ |c⊥
tf/2| + 2ϵ+ ϵ′, (68)

where the first and the third inequalities are due to the
triangle inequality, and the second is a result of the data
processing inequality. Applying the above, as long as
2ϵ+ ϵ′ ≤ 1, we straightforwardly get∣∣∣c⊥

tf/2

∣∣∣ ≥ 1√
2

− (2ϵ+ ϵ′). (69)

However, this is a non-trivial bound for 2ϵ+ ϵ′ ≤ 1√
2 .

Having Eqs. (32a)-(32c) in mind, to prove Eqs. (34a)-
(34b), we start by perceiving that due to the orthogonal-
ity of |Ψ0(t′)⟩ and |Ψ1(t′)⟩ one has

|s00(t′)| =
√

1−λt′
λt′

|s11(t′)| ≤
√

1−λt′
λt′

(1−|s00(t′)|2).
(70)

The above, together with Eq. (31), results in

|s00(t′)| =
√

1 − λt′ ≤
√
ϵ0.9 =: h0(ϵ), (71)

and proves Eq. (34a). To proceed with the proof, we
note that Eq. (31), along with Lemma 8, restricts at any
t, t′ ∈ [0, tf/2] the concurrence of |Ψψ0(t)(t′)⟩ to

E
(
Ψψ0(t)(t

′)
)

= 2
√
λt,t′ (1 − λt,t′) ≤ 2

√
2ϵ0.9, (72)

where we used λt,t′ to denote the largest eigenvalue
of ρψ0(t)(t′). Recall that through Eq. (66) we also get

E
(
Ψψ0(t)(t

′)
)

=2
√∑
j<k

|f0jf1k−f1jf0k|2 ≤ 2
√

2ϵ0.9, (73)

which implies that each term is bounded by

|f0j(t, t′)f1k(t, t′) − f1j(t, t′)f0k(t, t′)| ≤
√

2ϵ0.9, (74)

for any j, k such that j < k. On the other hand, writing
|ψ0(t)⟩ = ct|0⟩ + c⊥

t |1⟩, we can restate Eq. (32c) as

|Ψψ0(t)(t
′)⟩ = ct|Ψ0(t′)⟩ + c⊥

t |Ψ1(t′)⟩. (75)
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Therefore,

f00(t, t′) = ct
√
λt′ + c⊥

t s00(t′), (76a)

f11(t, t′) = ct
√

1 − λt′ + c⊥
t s11(t′), (76b)

fjk(t, t′) = c⊥
t sjk(t′), otherwise. (76c)

Hereafter, we may drop writing explicitly the dependence
on t′ through λt′ and sjk(t′) for brevity. The above
gives six inequalities for different choices of j < k due to
Eq. (74), which particularly include the following three
for the case of j = 0:

√
2ϵ0.9 ≥

∣∣c⊥
t

∣∣ ∣∣∣(ct√λ+ c⊥
t s00)s1k − c⊥

t s10s0k

∣∣∣ , (77a)
√

2ϵ0.9 ≥
∣∣∣(ct√λ+ c⊥

t s00)(ct
√

1 − λ+ c⊥
t s11)

− (c⊥
t )2s10s01

∣∣∣, (77b)

where k = 2, 3. The above inequalities are valid for any
t, t′ ∈ [0, tf/2].

On the other hand, Lemma 12 and Eq. (44), by virtue
of continuity of the evolution, imply that there has to
exist t∗ ≤ tf/2 such that for different times in [0, t∗], the
coefficient |c⊥

t | can get any value in [0, a(ϵ)] where

a(ϵ) = 1√
2

−
(

2ϵ0.9 +
√
ϵ(2 − ϵ)

)
. (78)

This gives a meaningful interval if ϵ ≤ 0.1, which in-
troduces the first bound on ϵ. Thus, the inequalities
in Eqs. (77a)-(77b) hold for any t′ ≤ tf/2 and for any
|c⊥
t | ∈ [0, a(ϵ)]. Therefore, from Eq. (77a) we have the

following
√

2ϵ0.9 ≥
∣∣c⊥
t

∣∣·∣∣∣(ct√λ+ c⊥
t s00)s1k − c⊥

t s10s0k

∣∣∣
≥
∣∣c⊥
t

∣∣ ∣∣∣·∣∣c⊥
t (s00s1k − s10s0k)

∣∣−
√
λ |cts1k|

∣∣∣, (79)

where for two specific values,
∣∣c⊥
t

∣∣ = 1
2 and

∣∣c⊥
t

∣∣ = a(ϵ),
we get

√
2ϵ0.9 ≥

√
3

4 |s1k|
√
λ− 1

4 |s00s1k − s10s0k| , (80a)
√

2ϵ0.9 ≥ a2(ϵ) |s00s1k − s10s0k| − 1
2 |s1k|

√
λ. (80b)

Assuming that

a2(ϵ) > 1
2
√

3
, (81)

which gives the second restriction on ϵ, i.e.,
ϵ ≤ 9.7 × 10−3, we insert Eq. (80b) into Eq. (80a)
and get

|s00(t′)s1k(t′) − s10(t′)s0k(t′)| ≤ h1(ϵ), (82)

with

h1(ϵ) :=

√
2ϵ0.9(1 + 2√

3 )
a2(ϵ) − 1

2
√

3
. (83)

This, in turn, bounds |s1k(t′)| for k = 2, 3 at any
t′ ≤ tf/2 through Eq. (80a) as

|s1k(t′)| ≤ 4
√

2ϵ0.9 + h1(ϵ)√
3(1 − ϵ0.9)

=: h2(ϵ). (84)

The above, along with Eqs. (71) and (82), implies

|s10(t′)s0k(t′)| ≤ h1(ϵ) + h0(ϵ)h2(ϵ) =: h3(ϵ). (85)

This obliges at least one of the following inequalities for
k = 2, 3 and t′ ∈ [0, tf/2]:

|s10(t′)| ≤
√
h3(ϵ), or |s0k(t′)| ≤

√
h3(ϵ). (86)

Moreover, from Eq. (77b) we obtain

√
2ϵ0.9 ≥

∣∣c⊥
t

∣∣ ∣∣(ct√λ+ c⊥
t s00)s11 − c⊥

t s10s01
∣∣

−
√

1 − λ
∣∣∣ct(ct√λ+ c⊥

t s00)
∣∣∣

≥
∣∣c⊥
t

∣∣ ∣∣∣ ∣∣c⊥
t (s00s11 − s10s01)

∣∣−
√
λ |cts11|

∣∣∣
−

√
ϵ0.9

(
|ct|2 + |ctc⊥

t |h0(ϵ)
)
, (87)

where in the last inequality we applied Eqs. (31) and (71).
From that, for two special cases of

∣∣c⊥
t

∣∣ = 1/2 and∣∣c⊥
t

∣∣ = a(ϵ), we get

√
2ϵ0.9 ≥

√
3

4 |s11|
√
λ− 1

4 |s00s11− s10s01| −
√
ϵ0.9, (88a)

√
2ϵ0.9 ≥ a2(ϵ) |s00s11− s10s01|− 1

2 |s11|
√
λ−

√
ϵ0.9. (88b)

Therefore, the same assumption as in Eq. (81) leads to

|s00(t′)s11(t′) − s10(t′)s01(t′)| ≤ h4(ϵ), (89)

where

h4(ϵ) :=
(
√

2ϵ0.9 +
√
ϵ0.9)(1 + 2√

3 )
a2(ϵ) − 1

2
√

3
. (90)

The same approach as before gives from Eqs. (71), (88),
(89) the following:

|s11(t′)| ≤ 4(
√

2ϵ0.9 +
√
ϵ0.9) + h4(ϵ)√

3(1 − ϵ0.9)
=: h5(ϵ), (91a)

|s10(t′)s01(t′)| ≤ h4(ϵ) + h0(ϵ)h5(ϵ) =: h6(ϵ), (91b)

which in turn means either

|s10(t′)| ≤
√
h6(ϵ), or |s01(t′)| ≤

√
h6(ϵ). (92)

However, we show that it is impossible to upper bound
|s10(t′)| by a function of h3(ϵ) or h6(ϵ) as in Eqs. (86)
and (92). In this order, note that for i ∈ {1, . . . , 6} the
functions hi(ϵ) converge to zero as ϵ goes to zero and
h6(ϵ) ≥ h3(ϵ). Moreover, sij(t′) are continuous with
respect to time while at t′ = 0 we have s10(0) = 1.
Consequently, if there exists t′ = t∗ when for the first
time |s10| takes the value

√
h6, then in the best case sce-

nario, according to Eqs. (85) and (91b), |s01(t∗)| =
√
h6

and |s0k(t∗)| = h3√
h6

for k = 2, 3. This, however, means

that the moduli of all the coefficients |sij(t∗)| are up-
per bounded by some functions of ϵ that monotoni-
cally go to zero as ϵ does (note that h3(ϵ) ≤ h6(ϵ)).
This, for sufficiently small ϵ, contradicts the fact that
|Ψ1(t∗)⟩ is a normalised state. Thus, it must be that
|s10(t′)| ≥

√
h6(ϵ) ≥

√
h3(ϵ). More precisely, applying

12



Eqs. (71), (84), (85), and (91) to the normalisation con-
dition,

|s10|2 = 1 −
∑
ij ̸=10

|sij |2, (93)

one can verify that for any ϵ ≤ 10−6, which is the third
and the strongest restriction on ϵ, we have

|s10(t′)| ≥
√

1
2

(
A+

√
A2 − 4B2

)
≥ 1 − 4

√
ϵ ≥

√
h6(ϵ), (94)

where A = 1 − h0(ϵ)2 − 2h2(ϵ)2 − h5(ϵ)2 and
B = 2h3(ϵ)2 + h6(ϵ)2. Thus, |s10(t′)| is the dominant co-
efficient for any t′ ≤ tf/2 and the equality holds only for
ϵ = 0, which completes the proof of Eq. (34b).

C Proof of Proposition 10
To prove the proposition we will use the following tech-
nical lemma whose proof can be found in Appendix D.

Lemma 13. Let |v⟩ ≠ 0 define a d-dimensional vector
and A be a matrix of the same dimension. Consider the
sequence |v⟩, A|v⟩, A2|v⟩, A3|v⟩, . . .. Then, there exists
n ≤ d such that

An|v⟩ =
n−1∑
i=0

λiA
i|v⟩ (95)

and the vectors |v⟩, . . . , An−1|v⟩ are linearly independent.
Moreover, it holds that

∥λ⃗∥1 ≤ n
(n+ 1)!

2 max [∥A∥∞, ∥A∥n∞] , (96)

where ∥A∥∞ is the operator norm of A.

Proof of Proposition 10. We start by noticing that,
through the data processing inequality, Eq. (54) implies

∀t ≤ tf : D
(
eLt(ρ1), eLt(ρ2)

)
≥ 1 − ϵ. (97)

Applying the upper bound from Eq. (22) and the fact
that for any two given states the fidelity is lower bounded
by their Hilbert-Schmidt inner product, the above gives:

∀t ≤ tf : Tr
[
eLt(ρ1)eLt(ρ2)

]
≤ ϵ(2 − ϵ). (98)

Next, recall that for a quantum channel E , there is a su-
peroperator representation ΦE which is a d2-dimensional
matrix defined by ΦE |ρ⟩⟩ = |E(ρ)⟩⟩ where for a matrix
X =

∑
xij |i⟩⟨j| the vector |X⟩⟩ =

∑
xij |ij⟩ is its row-

wise vectorised form. Let now |v⟩ := |ρ1⟩⟩|ρ2⟩⟩, Et = eLt,
and At := ΦEt

⊗ΦEt
where overline denotes complex con-

jugation. Eq. (98) can then be restated as

∀t ≤ tf : ⟨⟨I|At|v⟩ ≤ ϵ(2 − ϵ), (99)

where |I⟩⟩ is the vectorised form of d2-dimensional iden-
tity matrix. Also, consider any t⋆ ∈ (0, tf/(d4 − 1)] and
denote by |v′⟩ := |σ1⟩⟩|σ2⟩⟩ where for i = 1, 2

σi = eL(tf −(d4−1)t⋆)(ρi). (100)

Therefore, Lemma 13 implies that we can find a vector
λ⃗ ∈ Rd4 such that

Ad
4

t⋆ |v′⟩ =
d4−1∑
i=0

λiA
i
t⋆ |v′⟩ (101)

and ∥λ⃗∥1 ≤ H(d) with H(d) given in Eq. (56). The
latter is because of the Russo-Dye theorem stating that
every positive linear map attains its norm at the identity,
i.e., ∥E∥∞ = ∥E(1)∥∞. Therefore, one straightforwardly
gets ∥ΦE∥∞ ≤

√
d for any channel E , where the bound is

saturated when the map is a complete contraction into a
pure state. Thus, we have ∥At∥∞ = ∥ΦEt∥2

∞ ≤ d.
Additionally, Eq. (99) implies that for any

i ∈ {0, . . . , d4 − 1}

⟨⟨I|Ait⋆ |v′⟩ ≤ ϵ(2 − ϵ). (102)

This in turn means

⟨⟨I|Ad
4

t⋆ |v′⟩ ≤ H(d)ϵ(2 − ϵ). (103)

Replacing σ by ρ and re-writing the above by matrix
notation gives for all t⋆ ∈ (0, tf

d4−1 ]

Tr[eL(tf +t⋆)(ρ1)eL(tf +t⋆)(ρ2)] ≤ H(d)ϵ(2 − ϵ). (104)

The latter should be applied as an updated assumption
for t ≤ tf+ tf

d4−1 for the next interval, and so on. Thus, we
get the bound in Eq. (55), which completes the proof.

D Proof of Lemma 13
Proof of Lemma 13. We note that the proof of the first
part is obvious. To prove the bound, assume that
An|v⟩ =

∑n−1
i=0 λiA

i|v⟩ and |v⟩, . . . , An−1|v⟩ are linearly
independent, |v⟩ is normalised to 1 and A ̸= 0.

In the first case, we consider ∥A∥∞ = 1. De-
fine |vi⟩ = Ai−1|v⟩ for 1 ≤ i ≤ n + 1. Let
{|wi⟩} for i = 1, . . . , n be an orthonormal set such
that |w1⟩ = |v1⟩ and |vi⟩ = |zi⟩ + ci|wi⟩, where
|zi⟩ ∈ Span{|v1⟩, . . . , |vi−1⟩}. We can express the action
of A in the basis |wi⟩, that is

A|wi⟩ =
i+1∑
j=1

aj,i|wj⟩, (105)

for i < n, while for i = n

A|wn⟩ =
n∑
j=1

aj,n|wj⟩, (106)

with a2,1, . . . , an,n−1 ̸= 0. We can write

|v2⟩ = A|w1⟩ = a1,1|v1⟩ + a2,1|w2⟩. (107)

By induction, assume that for all k ≤ k0, we can write

|vk+1⟩ = pk,1|v1⟩ + . . .+ pk,k|vk⟩ + a2,1 · · · ak+1,k|wk+1⟩,
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where pk,i are polynomials of variables (aj,i) satisfying

pk,i =
∑
Zk

±aj1,i1 · · · ajr,ir (108)

for |Zk| ≤ f(k). In particular, for p1,1 we have f(1) = 1.
By assumption, for i = 2, . . . , k0 + 1 we have

|wi⟩ = |vi⟩ − pi−1,1|v1⟩ − . . .− pi−1,i−1|vi−1⟩
a2,1 · · · ai,i−1

. (109)

Then,

|vk0+2⟩ = A|vk0+1⟩ = pk0,1|v2⟩ + . . .+ pk0,k0 |vk0+1⟩
+ a2,1 · · · ak0+1,k0A|wk0+1⟩

= pk0,1|v2⟩ + . . .+ pk0,k0 |vk0+1⟩

+ a2,1 · · · ak0+1,k0

k0+2∑
j=1

aj,k0+1|wj⟩

:= pk0+1,1|v1⟩ + . . .+ pk0+1,k0+1|vk0+1⟩
+ a2,1 · · · ak0+2,k0+1|wk0+2⟩. (110)

Notice that f(k0 + 1) ≤ (k0 + 2)f(k0). That means we
have f(k) ≤ (k + 1)!/2. We continue the induction un-
til we express |vn⟩ in the same format and then we can
express An|v⟩ as

|vn+1⟩ = pn−1,1|v2⟩ + . . .+ pn−1,n−1|vn⟩
+ a2,1 · · · an,n−1A|wn⟩

:= pn,1|v1⟩ + . . .+ pn,n|vn⟩.
(111)

Eventually,

∥λ⃗∥1 =
n∑
k=1

|pn,k| ≤ nf(n) ≤ n
(n+ 1)!

2 . (112)

In the second case, we consider arbitrary A ̸= 0. Then,

∥A∥n∞
(

A

∥A∥∞

)n
|v⟩ = An|v⟩ =

n−1∑
i=0

λiA
i|v⟩

=
n−1∑
i=0

λi∥A∥i∞ (A/∥A∥∞)i |v⟩. (113)

According to the first case,
∑n−1
i=0 |λi|∥A∥i−n∞ ≤ n (n+1)!

2 ,
which implies ∥λ⃗∥1 ≤ n (n+1)!

2 max [∥A∥∞, ∥A∥n∞].
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