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What is the energy cost of extracting entanglement from complex quantum systems? In other words,
given a state of a quantum system, how much energy does it cost to extract m EPR pairs? This is an im-
portant question, particularly for quantum field theories where the vacuum is generally highly entangled.
Here we build a theory to understand the energy cost of entanglement extraction. First, we apply it to a
toy model, and then we define the entanglement temperature, which relates the energy cost to the amount
of extracted entanglement. Next, we give a physical argument to find the energy cost of entanglement
extraction in some condensed matter and quantum field systems. The energy cost for those quantum field
theories depends on the spatial dimension, and in one dimension, for example, it grows exponentially with
the number of EPR pairs extracted. Next, we outline some approaches for bounding the energy cost of
extracting entanglement in general quantum systems. Finally, we look at the antiferromagnetic Heisen-
berg and transverse field Ising models numerically to calculate the entanglement temperature using matrix
product states.

INTRODUCTION

Entanglement is the most important resource in quan-
tum information, with a vast array of practical uses [1].
In physics more generally, understanding the entanglement
structure in physical systems is becoming increasingly im-
portant, e.g., in condensed matter theory where quantum
phase transitions are signalled by long-range entanglement
[2–6]. In high energy physics, quantifying the entangle-
ment of states of a quantum field has applications to a vari-
ety of problems [7–9], from the AdS/CFT correspondence
[10], through to detecting spacetime curvature by probing
vacuum entanglement [11] or harvesting this entanglement
by locally coupling small systems to the field [12–19].

Quantifying entanglement in states of quantum fields is
a nontrivial task due to the UV dependence of quantum en-
tanglement near a boundary, leading to naive divergences
[20–22]. Many ad hoc approaches have been developed
to deal with these divergences, usually relying on subtract-
ing the UV divergent piece [20]. Of course, operationally,
there are no such divergences in the entanglement we can
measure because any apparatus we can build to extract en-
tanglement from the field vacuum would only use a finite
amount of energy.

Surprisingly little work has been done in the quantum in-
formation literature on the problem of quantifying accessi-
ble entanglement subject to an energy constraint. Here we
build a theory for this problem and use it to understand the
energy cost of extracting entanglement via local operations
and classical communication (LOCC). We use the term ex-
traction rather than one-shot distillation [23], as we want
to emphasise that we are not necessarily distilling all the
entanglement from a state. In contrast, we wish to quan-
tify the optimal energy cost per EPR pair extracted. While
individual protocols for entanglement extraction are inter-

esting, we are primarily concerned with the protocol that
minimises the energy cost.

There are some very interesting related ideas in the lit-
erature: in [24], general quantum operations costing zero
energy are studied. Also, the energy cost of creating en-
tanglement in specific many-body systems was calculated
in [25]. Similarly, in the setting of quantum thermody-
namics, the energy/work cost of creating correlations in
quantum systems was studied in [26–28]. These give use-
ful strategies for creating correlations between finite di-
mensional systems or a pair of bosons or fermions using
energy-conserving (global) unitary operations in the pres-
ence of heat baths. In [29], entanglement distillation is
considered (also in the presence of a heat bath) with an
energy constraint: asymptotically many entangled pairs are
distilled into EPR pairs, with the constraint that the energy
before and after is equal. In [30], using a specific local en-
tanglement harvesting protocol (called entanglement farm-
ing), the energy cost in the low energy regime was calcu-
lated. In contrast, here we are interested in how the optimal
energy cost scales with the number of EPR pairs extracted
and in the overall entanglement structure of states, which
is a rather different question.

In this article, we first provide the setting and define the
energy cost of a quantum operation. Then we introduce en-
tanglement extraction subject to an energy constraint. Fol-
lowing this, we explore the idea using a toy model, which
is chosen to share many of the features of the vacuum state
of a quantum field but to also be relatively simple. Next,
we introduce the entanglement temperature, which relates
the amount of entanglement extracted to the energy cost. In
the following section, we look at the energy cost of entan-
glement extraction in quantum field theories using physi-
cal arguments. Then we discuss some general methods for
quantifying the energy cost of entanglement extraction. In
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particular, one of these methods uses matrix product states
to numerically bound the energy cost of entanglement ex-
traction for some condensed matter systems and to plot the
entanglement temperature. We conclude with an outlook.

PRELIMINARIES

We focus on a simplified setup exemplifying the core
features of our problem. To whit, we focus on the set-
ting where two players, Alice and Bob, have access to a
bipartition of a common system with Hilbert space HAB .
This system, which we refer to as the physical system, has a
Hamiltonian HAB , which neither Alice nor Bob can mod-
ify. Alice and Bob also have access to local ancillary de-
grees of freedom A′B′, which they can use to store the
entanglement they extract from the physical system. Thus,
the total Hilbert space for the system is given by

HAA′BB′ ≡ HAB ⊗HA′B′ . (1)

We assume that Alice and Bob can carry out any local oper-
ation they like on the ancillary degrees of freedom with no
energy cost. Thus we associate to the total system+ancilla
system the Hamiltonian H = HAB ⊗ 11A′B′ .

FIG. 1. Energy cost of entanglement extraction: Alice and Bob
have access to two parts of a quantum system in an entangled
state |Ω〉AB with Hamiltonian HAB . Using local operations and
classical communication (LOCC), they extract m EPR pairs into
their ancillary systems A′ and B′, leaving the physical system in
the final state |ψ〉AB . Dropping subscripts, the energy cost is then
∆E = 〈ψ|H |ψ〉 − 〈Ω|H |Ω〉.

We assume that Alice and Bob can only perform local
operations and classical communication (LOCC). We also
suppose that Alice and Bob are working in the one-shot
regime, which is natural if, for example, we are thinking of
understanding the entanglement structure of vacuum states
in quantum field theory where there is only one copy of
the system available. In contrast, in the asymptotic many-
copy regime we could use entanglement distillation proto-

cols [1]. We will also comment on the energy cost in the
asymptotic regime.

We quantify the energy cost as follows. Suppose we have
a completely positive trace-preserving map E : S(H) →
S(H) acting on the space S(H) of density operators on
a Hilbert space H. Suppose we also have a Hamiltonian
H ∈ B(H). Given a state ρ ∈ S(H), the operation E
induces an energy change

∆(E , ρ) = tr(E(ρ)H)− tr(ρH) (2)

when acting on ρ (this can be negative). This is the energy
cost when we apply the channel E to the state ρ. We may
also define the energy cost for the channel E , which in-
volves an optimisation: we imagine that an adversary pre-
pares the system in the state ρ which leads to the largest
possible change in energy after application of E :

∆(E) = sup
ρ∈S(H)

tr(E(ρ)H)− tr(ρH). (3)

Exploiting the variational definition of the operator norm
‖ · ‖∞, we notice that

∆(E) = ‖H − E∗(H)‖∞, (4)

where E∗ is the dual of E acting in the Heisenberg pic-
ture. In the following, we will typically be interested in
∆(E , ρ) for a specific state and channel, or the set of LOCC
channels with ∆(E , ρ) ≤ ∆E. We denote this set by
CLOCC(∆E).

EXTRACTING ENTANGLEMENT SUBJECT TO AN
ENERGY CONSTRAINT

Here we propose a definition for the entanglement ac-
cessible to Alice and Bob when they have access only to
operations costing less than ∆E.

We imagine that the system AB starts in a state
σABA′B′ = |Ω〉AB 〈Ω| ⊗ |00〉A′B′〈00| where |0〉 is a con-
venient fiducial state of the ancilla and |Ω〉AB is the initial
state of the physical system. Alice and Bob are now al-
lowed to carry out LOCC operations costing less than ∆E
in total to maximise the quantum entanglement between
A′ and B′. Suppose that E ∈ CLOCC(∆E), then we write
ρAA′BB′ = E(σABA′B′). Thus we define the entanglement
accessible with energy ∆E to be

Ent∆E(|ΩAB〉) ≡ sup
E∈CLOCC(∆E)

Ent(ρA′B′), (5)

where Ent is some convenient entanglement measure.
We also define the energy cost of extracting m EPR

pairs to be ∆E = min ∆ (E , σABA′B′), where the min-
imum is over all LOCC channels satisfying ρA′B′ =
|φ+⊗m〉A′B′ 〈φ+⊗m|, and |φ+〉 = 1√

2
(|00〉 + |11〉) is a

maximally entangled state of two qubits.
It is well possible that after extracting entanglement the

energy of the system can go down, i.e., extracting entan-
glement can cool the system. This all depends on the state
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|ΩAB〉, i.e., whether it is an excited state or ground state.
Since the emphasis in this paper is on ground states, we
assume henceforth that |ΩAB〉 is the ground state of HAB .

A key ingredient in any entanglement extraction protocol
is the strength of the interaction between Alice’s and Bob’s
systems. If we write HAB = HA ⊗ 11B + 11A ⊗ HB +
VAB , then the limitations on how much entanglement Alice
and Bob can extract using LOCC are determined by VAB .
Indeed, if VAB = 0, the ground state |Ω〉 will have no
entanglement between Alice’s and Bob’s systems.

There is a useful naive protocol for entanglement extrac-
tion: Alice and Bob first swap the states of their primed
and non-primed systems. Then they can prepare a state
of the physical AB system (using LOCC) with minimal
local energy, meaning Alice/Bob prepares |ψA/B〉, such
that 〈ψA/B|HA/B |ψA/B〉 is minimised. The total energy
change is, with |ψ〉 = |ψA〉 |ψB〉,

〈ψ|H |ψ〉 − 〈Ω|H |Ω〉
≤ 〈ψ|VAB |ψ〉 − 〈Ω|VAB |Ω〉 ≤ 2‖VAB‖∞.

(6)

Therefore, when the coupling is sufficiently weak, Alice
and Bob can safely extract all the entanglement whilst only
incurring a small energy cost.

In contrast, for strong couplings the situation is entirely
different, which is exactly the case for quantum field the-
ories, where extracting all the entanglement costs a diver-
gent amount of energy. For the example of a free fermion
field, we see in the appendix that all product states |ψ〉 sat-
isfy 〈ψ|H |ψ〉 ≥ 1/a, where a is the regulator (the lattice
spacing in this case). Thus, the energy diverges as a → 0
for any product state, meaning that extracting all the entan-
glement costs a diverging amount of energy. In general, the
energy cost for extracting all the entanglement will diverge
in quantum field theory. Again using a lattice regulator,
the energy contained in the interaction terms between a re-
gion A and the rest scales like (∂A/ad), where ∂A is the
boundary of A, which is also shown in the appendix.

A TOY MODEL

In this section we discuss an idealised model, which ex-
emplifies many of the features of the quantum field vac-
uum. It has high entanglement and a high energy cost for
extracting all this entanglement, as we will see.

Suppose that the systemAB is actually composed of 2n
qubits, with n qubits in A and n qubits in B. We call
the qubits Aj (respectively, Bj), for j = 1, 2, . . . , n. We
suppose that HAB is given by

HAB =
n∑
j=1

(I− PAjBj
), (7)

where PAjBj
is the projector onto the maximally entangled

state |Φ+〉 = 1√
2
(|00〉 + |11〉) of qubits Aj and Bj . The

ground state |ΩAB〉 ofHAB is thus a product of maximally

entangled pairs, i.e., it is a maximally entangled state be-
tween A and B.

If Alice and Bob could do arbitrary LOCC, then they
could easily extract n EPR pairs. However, if they are only
allowed an energy cost of ∆E, then naively they should
only be able to extract O(∆E) EPR pairs.

In the most extreme case, Alice and Bob fully extract
all the EPR pairs. Then, in order that this entanglement is
between ancilla degrees of freedom in A′ and B′, it must
be that A and B are in a separable state σAB . Since the
energy depends linearly on σAB , we may as well suppose
that σAB is an extreme point of the convex set of separable
states, namely, a product state |φ〉A|ψ〉B . The energy of
our initial state |Ω〉AB was zero, so the energy cost of any
entanglement extraction procedure must be greater than

inf
|φ〉A|ψ〉B

n∑
j=1

(1− 〈φA|〈ψB|PAjBj
|φA〉|ψB〉). (8)

This infimum is achieved by finding the supremum:

sup
|φ〉A|ψ〉B

〈φA|〈ψB|PAjBj
|φA〉|ψB〉, (9)

which is equal to 1/2. (E.g., setting each pair to |00〉AiBi

will do the job.) Thus, the energy cost is given by

∆E ≥ 1

2

n∑
j=1

1 = n/2. (10)

More generally, suppose Alice and Bob extract fewer
EPR pairs (saym). One option is to use the following sim-
ple protocol. They swap the states of the first m EPR pairs
of the physical system into their ancilla systems, which
they can do using local operations. The first m pairs of
qubits of the physical system are now in a product pure
state. Then they can apply local unitaries mapping each
of these qubit pairs to the state |00〉AiBi

, getting the final
energy cost

∆E =
1

2

m∑
j=1

1 = m/2. (11)

Thus, the total energy cost is 1/2 per EPR pair extracted.
Of course, there may be a protocol extracting the same

amount of entanglement but costing less energy. Here we
will argue that the simple protocol given above is, in fact,
optimal.

We assume that after applying their operations, Alice
and Bob get m Bell states in the ancilla |Φ+⊗m〉A′B′ and
some pure state in the physical system |ψ〉AB . Denote the
Schmidt values (decreasingly ordered) of the initial state
|Ω〉AB |00〉A′B′ by αi, and note that the Schmidt rank is
2n. For it to be possible to transform this state into the
new state |ψ〉AB |Φ+⊗m〉A′B′ , with Schmidt values βi, the
majorization condition [31] must be satisfied:

∀K ≥ 1
K∑
i=1

αi ≤
K∑
i=1

βi. (12)
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For this to be possible, the Schmidt rank of the resulting
state must be smaller. This implies that the Schmidt rank
of the new state of the physical system |ψ〉AB can be at
most 2n−m.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

∆S0

∆
E

Toy Model (n=5)

FIG. 2. This figure shows the minimum energy cost of extracting
entanglement for the toy model. More precisely, the figure shows
the minimum change in energy ∆E when there is a decrease in
zero entropy ∆S0 (with S0 equal to log2 of the Schmidt rank)
of the state of the physical system. When ∆S0 is an integer m
(which corresponds to extracting m EPR pairs from the system),
then the plot shows ∆E = 0.5m. The calculation was performed
using DMRG by restricting the bond dimension between Alice
and Bob’s systems.

Figure 2 shows numerics from a DMRG calculation of
the minimum increase in energy as the Schmidt rank of
the state of the physical system decreases. Based on these
numerical results, we see that the minimum increase in en-
ergy when the Schmidt rank decreases by a factor of 2m

is 0.5m. This can be achieved by the simple protocol of
the previous section, indicating that this protocol is opti-
mal. Actually, this whole argument also goes through even
if Alice and Bob have some additional shared entanglement
that can be used as a catalyst, as in [32].

In terms of entanglement distillation in the asymptotic
setting, this is not optimal. In that case, one can distil en-
tanglement at a lower energy cost, which we show later. In
practice, however, we only have access to one copy of a
quantum field or condensed matter system, so it is crucial
to consider the one-shot setting. Furthermore, entangle-
ment distillation protocols rely on projecting onto typical
subspaces defined by the singular vectors of the initial state
[31], which for extremely complex systems would be prac-
tically impossible.

THE ENTANGLEMENT TEMPERATURE

In the previous section, the total energy cost was 1/2 per
EPR pair extracted. To relate the change in entanglement

entropy ∆S to the energy cost ∆E, we define the entan-
glement temperature Tent by

∆E = Tent∆S. (13)

(The name entanglement temperature is chosen in anal-
ogy with thermodynamics.) So Tent is a property of the
ground state of a system. For the toy model, we see that
Tent = 1/2 since ∆S = m log2(2) = m. In this case
Tent is constant because there is a linear relationship be-
tween the entanglement extracted and the energy cost. For
general systems, we would not expect ∆E ∝ ∆S for the
entire range of ∆S. Instead, we should think of the en-
tanglement temperature as a function of the extracted en-
tanglement. (This is also true in thermodynamics, where
temperature can often be thought of as a function of other
state functions, such as entropy or pressure.)

In the following sections, we give some physical and nu-
merical arguments to find ∆E as a function of ∆S and
hence find the entanglement temperature for some physical
systems.

THE ENERGY COST IN GENERAL

For some quantum field theories or condensed matter
systems, we can give a physical argument for the energy
cost of entanglement extraction. In one dimensional sys-
tems, often the entanglement entropy (or, for example, the
logarithmic negativity) of ground states can be calculated.
This typically has the form S(ρI) = c1 log2(N) + c2,
where ci are constants and ρI is the state restricted to a
contiguous region with N sites [33, 34]. For a quantum
field theory, regulated by a lattice with lattice spacing a,
we have instead S(ρI) = c1 log2(l/a) + c2, where l is the
length of a region. Also, the entanglement entropy in the
ground state of models close to the critical point is [21, 34]

S(ρI) =
c

6
log2(ξ/a), (14)

where ξ � a is the correlation length, c is a constant
and I corresponds to the infinite half-line (−∞, 0]. This
is equivalent to a massive relativistic QFT with 1/ξ equal
to the mass, e.g., for free bosons we have c = 1.

As argued previously, the energy cost for extracting all
of this entanglement is ∆E = O(1/a). At lattice spac-
ing, a = ξ/26m/c, we have S(ρI) = m, meaning that
the most entanglement we can extract is m EPR pairs. (In
some cases, exactly half of this entanglement is one-shot
distillable [35].) By probing higher energies, which corre-
sponds to smaller values of a, we can extract more entan-
glement, and we have the energy cost ∆E ∝ exp(Km),
where K = 6 ln(2)/c. This means that the energy cost
of entanglement extraction increases exponentially: there
is infinite entanglement in the quantum field vacuum, but
the cost of extraction grows quickly. (For gapless models
the same argument goes through if Alice has access to a
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FIG. 3. The energy cost of entanglement extraction from the
quantum field vacuum depends heavily on the spatial dimension.
Here we sketch the behaviour in dimensions d = 1, 2, 3. When
d = 1, ∆E ∝ exp(K∆S), where K is a constant, and for d > 1,
∆E ∝ ∆Sd/(d−1).

finite region and Bob has access to the rest. In contrast, if
Alice’s system is a halfline, there is infinite entanglement
at any energy scale.)

The scaling is different for quantum fields in higher di-
mensional spaces. In many cases, the entanglement en-
tropy of the ground state obeys an area law [36]. Then in a
region A with area ∂A, the leading contribution to the en-
tropy is S(ρA) ∝ ∂A/ad−1. However, the energy cost of
extracting all the entanglement scales like ∆E ∝ ∂A/ad.
Thus we get an idea for the energy cost of entanglement
extraction: ∆E ∝ ∆Sd/(d−1). And the entanglement tem-
perature is then Tent ∝ 1/a ∝ ∆E1/d. The energy cost of
entanglement extraction in QFT are plotted in figure 3.

For more general systems, there is no clear way to pro-
ceed. Below we outline some potential methods to ap-
proach the problem. In the first two cases, we suppose that
Alice and Bob use some LOCC protocol to extract m EPR
pairs into their ancillary systems, and in the third we con-
sider the trade-off between entanglement change and en-
ergy cost numerically.

Method I

Alice and Bob have the initial state |Ω〉AB |00〉A′B′ , and
then they apply some LOCC protocol to extract m EPR
pairs into the ancilla A′B′. We assume that the resulting
state on the physical system after the protocol is also pure
|ψ〉AB . (It is possible that a protocol giving a mixed state
on the physical system may be more efficient. In this case,
we may use a superadditive entanglement measure, like the
squashed entanglement [37], to upper bound the entangle-
ment left in the physical system.) Because they are using
LOCC, the overall entanglement can only decrease:

Ent
(
|ψ〉AB |Φ+〉⊗mA′B′

)
≤ Ent (|Ω〉AB |00〉A′B′)

= Sinitial,
(15)

where Sinitial is the initial entanglement entropy in the state
|Ω〉AB and Ent is an entanglement measure, which we take
to be the entanglement entropy, since the states are all pure.
Then we have that the entanglement entropy in the final
state of physical system is Ent (|ψ〉AB) ≤ Sinitial −m.

So what is the minimum energy cost of extracting this
entanglement? We can get an idea by finding the state (or
set of states) that have this final value of entanglement en-
tropy while minimising the energy. In the appendix, we
derive the equation

[H − µ111A ⊗ log(ρB)− µ1 + µ2] |ψ〉AB = 0, (16)

where µi are Lagrange multipliers and trA[|ψ〉 〈ψ|] = ρB .
This is difficult to solve in general but may be simplified

if we know something about the structure of H . This is the
case for the toy model, where H is a sum of commuting
terms acting on different pairs of qubits AiBi.

With the ansatz |ψ〉AB = |ψ1〉A1B1
⊗...⊗|ψn〉AnBn

, we
see from equation (16) that each |ψi〉AiBi

should have the
same Schmidt vectors as |Φ+〉AiBi

. One possible solution
is to take all qubit pairs to be in the same state: |ψ〉AB =
|φ〉A1B1

⊗ ... ⊗ |φ〉AnBn
, where |φ〉 = α |00〉 + β |11〉.

Then, since Sinitial = n, one need only solve

n−m = −n[α2 log2(α2) + β2 log2(β2)] (17)

for α and β. And the corresponding energy cost is ∆E =
n[1− (α+ β)2/2].

For example, with m = n/2, one gets ∆E ' 0.38m.
This is smaller than the optimal energy cost in the one-
shot setting: ∆E = 0.5m. However, in the one-shot set-
ting, Alice and Bob cannot prepare the state |ψ〉AB af-
ter extracting m EPR pairs (because |ψ〉AB has maximal
Schmidt rank). Interestingly, however, we get a nontriv-
ial upper bound on the optimal energy cost of extracting
entanglement in the asymptotic setting of many copies of
this system. In the asymptotic setting, the criterion for de-
ciding whether one bipartite entangled pure state can be
transformed into another reversibly using LOCC is that the
entanglement entropies are the same [31]. So we see that
the energy cost of distilling m EPR pairs (per copy of the
physical system) in the asymptotic setting will be lower
than in the one shot case.

Method II

A second option is to maximise the overlap of the fi-
nal state of the physical system (after the entanglement
has been extracted) with its ground state. This gives a
naive strategy at least. And for Hamiltonians of the form
HAB = − |Ω〉 〈Ω|, we get an exact answer for the optimal
energy cost.

As an example, take |Ω〉 = (1/
√
d)
∑d

i=1 |i〉A |i〉B ,
where d = 2n. Suppose that Alice and Bob extractm EPR
pairs using LOCC, leaving a pure state |ψ〉 in the physical
system. Using the majorization criterion, this can be any
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state with Schmidt rank up to K = 2n−m. To minimise
the energy cost, we need to find such a state having maxi-
mal overlap with |Ω〉.

We may write the optimal |ψ〉 in its Schmidt basis as∑K
i=1 αi |ai〉A |bi〉B . Next notice that(

d∑
i=1

〈i|A 〈i|B

)
|ai〉A |bi〉B ≤ 1. (18)

Then we have

〈Ω|ψ〉 ≤ 1√
d

K∑
i=1

αi ≤
√
K

d
= 2−m/2. (19)

Therefore, we see that the energy cost for extracting m
EPR pairs is ∆E = 1− 1/2m.

Method III

A third option is to consider the trade-off between entan-
glement and energy numerically. For a given Hamiltonian
H , we consider a procedure in which the system starts in
the ground state |Ω〉, some entanglement is extracted, and
the system is left in a final state |ψ〉. The energy cost of
this procedure is 〈ψ|H|ψ〉 − 〈Ω|H|Ω〉, and the extracted
entropy is upper bounded by Ent(|Ω〉)− Ent(|ψ〉). In the
asymptotic many-copy case, this is exactly the extracted
entanglement entropy. We denote the entanglement tem-
perature in that case by TAent. We have that

TAent ≤
〈ψ|H|ψ〉 − 〈Ω|H|Ω〉
Ent(|Ω〉)− Ent(|ψ〉)

. (20)

Note that for a given amount of extracted entangle-
ment ∆S, the one-shot entanglement temperature is lower
bounded by the asymptotic-setting entanglement tempera-
ture TAent ≤ Tent.

A given state does not necessarily give a tight bound on
TAent. For this we need to study the optimal trade-off be-
tween entanglement and energy, which is given by a Pareto
front. By randomly generating states with low energy and
low entanglement, we can numerically evaluate the above
upper bound, and use this to compute the Pareto front. We
describe a tensor network method for generating such sam-
ples in the appendix. In Figure 4 we present numerical
results for two 1D spin models.

OUTLOOK

We introduced a framework to understand and quantify
the energy cost of extracting entanglement from complex
quantum systems. After looking at a toy model, which
illustrated the key concepts, we defined the entanglement
temperature. Then we analysed the energy cost of entan-
glement extraction in quantum field theories, and we saw
that the energy cost of extracting entanglement depends on
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FIG. 4. Asymptotic-case entanglement temperature (TAent =
∆E/∆S) as a function of entropy change ∆S for the criti-
cal Heisenberg anti-ferromagnet and the critical transverse-field
Ising model, for multiple system sizes. Notice that near the
ground state TAent ∝ ∆S, which we prove is generic in the ap-
pendix. The one-shot entanglement temperature Tent is lower
bounded by the asymptotic temperature TAent.

the spatial dimension. Finally, we looked at some gen-
eral methods to approach the problem, including numerical
methods for lattice models.

Quantifying how much energy extracting m EPR pairs
costs in physical systems illuminates the entanglement
structure of states, particularly ground states of, e.g., quan-
tum fields. But it also can upper bound how efficient pro-
tocols such as entanglement harvesting can be. For general
systems the optimal strategy for entanglement extraction
may be hard to find. Still, it is heartening that, at least for
quantum field theories, there is a relatively simple form of
the entanglement temperature.

It would be interesting to combine the ideas here with
those in [38], where transformations between entangled
states are considered using an additional resource: an en-
tanglement battery. This is a reservoir from which entan-
glement may be taken or deposited to facilitate state trans-
formations, which may be impossible otherwise. One may
then ask how this theory changes when there is also an en-
ergy cost associated with using the entanglement in the bat-
tery.
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Energy cost of fermion ground state entanglement

Consider free massless fermions in (1 + 1) dimensions
with lattice cutoff a. To avoid worrying about fermion dou-
bling, take staggered fermions [39], with Hamiltonian

H =
N−1∑
n=0

[
i(ψ†nψn+1 − ψ†n+1ψn)

2a
+

1

a

]
, (21)

where ψn are fermion annihilation operators, satisfying
{ψn, ψ†m} = δn,m and {ψn, ψm} = 0. We have chosen
the 1/a term on the right so that, as a → 0, the Hamilto-
nian is positive definite with ground state energy indepen-
dent of a (which we verify at the end of the section). This
normalization also has the advantage that each term in the
sum is positive definite:

i(ψ†nψn+1 − ψ†n+1ψn) + 2

=(ψ†n − iψ
†
n+1)(ψn + iψn+1) + ψ†nψn + ψ†n+1ψn+1.

(22)

Now suppose Alice’s system is one half of the chain (sites
0 to N/2 − 1), and Bob’s system is the other half. If they
extract the entanglement by swapping the state of the phys-
ical system into an ancilla, then the final state of the chain
is [40]

|ψ〉 = (αψ†N/2−1A
†
1+βA†2)(γψ†N/2B

†
1+δB†2) |0〉 , (23)

where |0〉 is the state satisfying ψn |0〉 = 0 for all n;
A1, A2 are products of annihilation operators on Alice’s

system, while B1, B2 are products of annihilation opera-
tors on Bob’s system; and α, β, γ, δ are complex numbers.
Because of superselection rules, if A1 is a product of an
odd number of annihilation operators, then A2 is even, or
vice versa. The same holds for B1 and B2. Then one can
easily verify that

〈ψ|
[
i(ψ†nψn+1 − ψ†n+1ψn)

2a
+

1

a

]
|ψ〉 ≥ 1

a
. (24)

So the energy of this state diverges as a→ 0.
Finally, we need to verify that we normalised the Hamil-

tonian suitably and that the ground state energy of the
staggered-fermion Hamiltonian is independent of a. Thus,
we need to diagonalise

H =
N−1∑
n=0

[
i(ψ†nψn+1 − ψ†n+1ψn)

2a
+

1

a

]
. (25)

To do this, we switch to momentum space, with

ψn =
1√
N

N−1∑
k=0

e−2πikn/Nψk. (26)

Then we have

H =
N−1∑
k=0

[
−sin(2πk/N)

a
ψ†kψk +

1

a

]
. (27)

This has minimum energy

E0 =
N

a
− N

2a

 2

N

N/2−1∑
k=0

sin(2πk/N)

 , (28)

where we have assumed that N is even. We next define the
Riemann sum over [0, 1] to be

RM [f(x)] =
1

M

M∑
m=1

f

(
m− 1/2

M

)
. (29)

And we may use the following formula for convergence of
a Riemann sum [41]∣∣∣∣RM [f(x)]−

∫ 1

0

dx f(x)

∣∣∣∣ ≤ T (f ′)

8M2
, (30)

which holds when f is differentiable everywhere on [0, 1]
with bounded derivative and total variation T (f ′) =∫ 1

0
dx |f ′(x)|. To apply this to E0, we write M = N/2.

Then

1

M

M−1∑
k=0

sin(πk/M) =
1

M

M∑
k=1

sin(π(k − 1)/M)

= cos
( π

2M

)
RM [sin(πx)]− sin

( π

2M

)
RM [cos(πx)]

=(1 +O(M−2))RM [sin(πx)]−O(M−1)RM [cos(πx)]

=RM [sin(πx)] +O(M−2)

=2 +O(M−2).
(31)
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To get the second line, we used that sin(A + B) =
sin(A) cos(B) + cos(A) sin(B) and equation (29). In the
third line, we used cos(x) = 1 + O(x2) and sin(x) =
O(x) for sufficiently small x. To get the fourth line, we
used equation (30) to get RM [cos(πx)] = 0 + O(M−2).
And we used equation (30) again to get the last line.

Therefore, the ground state energy is

E0 =
N

a
− N

2a

[
2 +O(N−2)

]
= O

(
1

Na

)
, (32)

and since 1/Na = 1/L is a constant, E0 is essentially
independent of the lattice spacing.

For general lattice regularizations of quantum field the-
ory, the energy contained in the interactions between a re-
gion A and the rest of the lattice scales like (∂A/ad−1)×
1/a, where ∂A is the boundary of A. To see this, note
that the region A has approximately ∂A/ad−1 interaction
terms with the rest, and the strength of each interaction is
proportional to 1/a. Dimensional analysis is often enough
to argue this, but one can check for, e.g., massless scalar
field theory in d dimensions. In that case, the interaction
term between lattice sites comes from the discrete deriva-
tive:

(∇aφ)2(~n) =
d∑
i=1

(
φ(~n+ a~ei)− φ(~n)

a

)2

, (33)

where ~ei are lattice basis vectors. The Hamiltonian is given
by

H =
∑
~n

ad

2

[
π2(~n) + (∇aφ)2(~n)

]
, (34)

where π(~n) is the operator canonically conjugate to φ(~n).
Because φ(~n) has dimensions of (length)(1−d)/2, we
see that the interaction terms between sites have strength
O(1/a). One can also show that the energy density of a
product state in quantum field theory is infinite [42].

Lowest energy pure state with fixed entanglement

We wish to minimise the energy, given that the entangle-
ment entropy is fixed. We can do this using Lagrange mul-
tipliers (analogously to how one derives the thermal state
by maximising the entropy at fixed energy; see also [43]
for a similar calculation). Thus, we have the Lagrangian

L(ρAB) = tr[ρABH]− µ1S(ρB) + µ2tr[ρAB], (35)

where µi are Lagrange multipliers, and we minimise this
by setting ∂XL(ρAB) = 0, where

∂Xf(σ) = lim
ε→0

f(σ + εX)− f(σ)

ε
. (36)

To compute the derivative of S(ρB), we use

∂Xf(trA[σ]) = ∂trA[X]f(trA[σ]). (37)

We also use the following formula from [44]

∂X log(σ) =

∫ ∞
0

du
1

σ + u11
X

1

σ + u11
, (38)

where σ is a density operator. This implies that

tr [σ ∂X log(σ)] = tr[X]. (39)

The result is that we need to find a state ρAB satisfying

tr [X (H − µ111A ⊗ log(ρB)− µ1 + µ2)] = 0 (40)

but not for any X because we want to ensure that we only
consider pure states. Writing ρAB = |ψ〉〈ψ|, let

X = |φ〉〈ψ|+ |ψ〉〈φ| . (41)

Then, writingQ = Q† = H−µ111A⊗ log(ρB)−µ1 +µ2,
we get

〈ψ|Q |φ〉+ 〈φ|Q |ψ〉 = 0. (42)

But this must be true for any |φ〉. Choosing |φ〉 = Q |ψ〉,
we get

〈ψ|Q2 |ψ〉+ 〈ψ|Q2 |ψ〉 = 0, (43)

which is only possible if Q |ψ〉 = 0. So we have

[H − µ111A ⊗ log(ρB)− µ1 + µ2] |ψ〉 = 0. (44)

Note that trA [|ψ〉〈ψ|] = ρB , so this is unfortunately not
linear.

Numerical method for sampling low energy and low
entanglement states

We now briefly describe a method for sampling states
which, with respect to a given Hamiltonian and bipartition,
have low energy and low entanglement. The idea is to start
in a random state, and then repeatedly attempt to lower both
the energy and entanglement of this state in turn. We rep-
resent the state numerically in the form of a Matrix Product
State (MPS), and utilise tensor network techniques to lower
the energy and entropy.

To lower the energy of the state we perform imaginary
time evolution. Specifically we apply an approximation of
e−τH for some τ > 0, and then renormalise the state, and
trim down the bond dimension. We approximate e−τH by
using a Suzuki-Trotter expansion [45], in method similar
to that used in time-evolving block decimation [46–49].

To lower the entropy we leverage normal forms of MPS.
By performing successive singular value decompositions,
the Schmidt decomposition of a matrix product state

|ψ〉 =
∑
α

λα |lα〉 ⊗ |rα〉 (45)

can be efficiently calculated [50]. To lower the entropy we
want to ‘sharpen’ the Schmidt spectrum, by raising it to a
power

|ψ′〉 ∝
∑
α

λ1+ε
α |lα〉 ⊗ |rα〉 , (46)
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for some constant ε.
By performing the above procedures successively with

random parameters on random states we can sample from
states in a manner that is biased towards those with low
energy and low entanglement, allowing us to approximate
the Pareto front of the two variables as in Figure 4.

The models we chose to look at are the Heisenberg anti-
ferromagnet and the transverse-field Ising model both at
criticality:

HHAF =
N−1∑
n=1

(
σxnσ

x
n+1 + σynσ

y
n+1 + σznσ

z
n+1

)
,

HTFI = −
N−1∑
n=1

σznσ
z
n+1 −

N∑
n=1

σxn,

(47)

where σxn, σyn and σzn are the Pauli x, y and z matrices.

Entanglement temperature near the ground state in local
spin systems

In Figure 4 we see that TAent ∝ ∆S close to the ground
state for the Heisenberg anti-ferromagnet and transverse-

field Ising model. This behaviour is in fact generic for
quantum spin systems when sufficiently close to the ground
state.

Consider starting with the Schmidt decomposition of the
ground state |Γ〉 =

∑
α λα |lα〉 ⊗ |rα〉, and perturbing the

highest Schmidt weight

|Γ′〉 ∝
∑
α

√
λ2
α + εδα,0 |lα〉 ⊗ |rα〉 , (48)

for some 0 ≤ ε � λ0. Taking the Taylor expansions, we
find that

∆S = −
[
S + log λ2

0

]
ε+O(ε2), (49)

∆E =

[
〈l0r0|H |l0r0〉

4λ2
0

]
ε2 +O(ε3), (50)

which indeed implies TAent ∝ ∆S close to the ground state,
as observed.

It is worth mentioning that we are primarily interested in
the regime of large (but finite) ∆S extraction, as opposed
to ∆S � 1 where TAent ∝ ∆S ' 0. For larger ∆S, we
expect that generically TAent is far from zero. In contrast, the
small ∆S regime is analogous to thermodynamics close to
absolute zero where the heat capacity vanishes.


	Energy cost of entanglement extraction in complex quantum systems
	Abstract
	Introduction
	Preliminaries
	Extracting entanglement subject to an energy constraint
	A toy model
	The entanglement temperature
	The Energy Cost in General
	Method I
	Method II
	Method III

	Outlook
	Acknowledgements
	References
	Energy cost of fermion ground state entanglement
	Lowest energy pure state with fixed entanglement
	Numerical method for sampling low energy and low entanglement states
	Entanglement temperature near the ground state in local spin systems


