Resonances in finite-resource interconversion

Christopher Chubb

EQus, University of Sydney

Kamil Korzekwa (USyd→UGdańsk) Marco Tomamichel (UTS)

> ArXiv: 1810.02366 Doi: 10/gfxb5z (PRL)

> > BIID 2019, UTS 2019-07-03

- Resource theories describe the physics of constrained systems
- Defined by sets of free states and free operations
- Any non-free state is a *resource state*
- How do we quantify the resourcefulness of a state?

Resource theory	Physical constraint	Free operations	Free states
Entanglement	Physical separation	Local operations and classical communication	Separable states
Thermodynamics	Laws of Thermodynamics	Thermal operations	Thermal state
Coherence	Inability to create coherent superpositions in a specific basis	Incoherent operations	Incoherent states
Purity	Inability to purify states	Unital operations	Maximally mixed state

Entanglement (bipartite)

Separable states:

$$\rho = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$$

Local ops. and classical communication:

$$\mathcal{E}(\rho) = \sum_{a} (\mathcal{I} \otimes \mathcal{E}_{a}) \Big((M_{a} \otimes I) \rho(M_{a}^{\dagger} \otimes I) \Big)$$

Thermodynamics

Thermal state:

$$\gamma = e^{-\beta H} / \operatorname{Tr} e^{-\beta H}$$

Thermal operations:

$$\mathcal{E}(\rho) = \operatorname{Tr}_B U(\rho \otimes \gamma^k) U^{\dagger} \quad [U, H] = 0$$

Resource theory	Physical constraint	Free operations	Free states
Entanglement	Physical separation	Local operations and classical communication	Separable states
Thermodynamics	Laws of Thermodynamics	Thermal operations	Thermal state
Coherence	Inability to create coherent superpositions in a specific basis	Incoherent operations	Incoherent states
Purity	Inability to purify states	Unital operations	Maximally mixed state

Entanglement (bipartite)

Separable states:

$$\rho = \sum_{i} \mathbf{p}_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$$

Local ops. and classical communication:

$$\mathcal{E}(
ho) = \sum_{a} (\mathcal{I} \otimes \mathcal{E}_{a}) \Big((M_{a} \otimes I)
ho (M_{a}^{\dagger} \otimes I) \Big)$$

Thermodynamics

Thermal state:

$$\gamma = e^{-\beta H} / \operatorname{Tr} e^{-\beta H}$$

Thermal operations:

$$\mathcal{E}(\rho) = \operatorname{Tr}_B U(\rho \otimes \gamma^k) U^{\dagger} \quad [U, H] = 0$$

Resource theory	Physical constraint	Free operations	Free states
Entanglement	Physical separation	Local operations and classical communication	Separable states
Thermodynamics	Laws of Thermodynamics	Thermal operations	Thermal state
Coherence	Inability to create coherent superpositions in a specific basis	Incoherent operations	Incoherent states
Purity	Inability to purify states	Unital operations	Maximally mixed state

Entanglement (bipartite)

Thermodynamics

Separable states:

$$\rho = \sum_{i} \mathbf{p}_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$$

Local ops. and classical communication:

$$\mathcal{E}(\rho) = \sum_{\mathfrak{a}} (\mathcal{I} \otimes \mathcal{E}_{\mathfrak{a}}) \Big((M_{\mathfrak{a}} \otimes I) \rho (M_{\mathfrak{a}}^{\dagger} \otimes I) \Big)$$

Thermal state:

$$\gamma = \mathrm{e}^{-\beta \mathrm{H}}/\operatorname{Tr}\mathrm{e}^{-\beta \mathrm{H}}$$

Thermal operations:

$$\mathcal{E}(
ho) = \operatorname{Tr}_B U(
ho \otimes \gamma^k) U^{\dagger} \quad [U, H] = 0$$

One way of assessing the resourcefulness of a state is to ask which resource interconversions are possible.

Single-shot

For which states ρ and σ do there exist free operations $\mathcal E$ such that

$$\mathcal{E}(\rho) = \sigma \quad \text{or} \quad \mathcal{E}(\rho) \approx_{\epsilon} \sigma.$$

- Conditions may be difficult to compute
- Doesn't tell us about large numbers of states

Asymptotic

What is the maximum rate $R(
ho,\sigma)$ such that

$$\mathcal{E}\left(\boldsymbol{\rho}^{\otimes n}\right)\approx\boldsymbol{\sigma}^{\otimes \operatorname{Rn}}$$

as $n \to \infty$.

- $R(
 ho, \sigma)$ often easy to compute
- Obscures finite-size or finite-error effects

Intermediate

We will consider the intermediate regime: rates $R(n, \epsilon)$, with $n < \infty$ and $\epsilon > 0$, such that

$$\mathcal{E}\left(\rho^{\otimes n}\right) \approx_{\epsilon} \sigma^{\otimes Rn}.$$

One way of assessing the resourcefulness of a state is to ask which resource interconversions are possible.

Single-shot

For which states ρ and σ do there exist free operations ${\mathcal E}$ such that

$$\mathcal{E}(\rho) = \sigma \quad \text{or} \quad \mathcal{E}(\rho) \approx_{\epsilon} \sigma.$$

- Conditions may be difficult to compute
- Doesn't tell us about large numbers of states

Asymptotic

What is the maximum rate $R(
ho,\sigma)$ such that

$$\mathcal{E}\left(\boldsymbol{\rho}^{\otimes n}\right)\approx\boldsymbol{\sigma}^{\otimes \operatorname{Rn}}$$

as $n \to \infty$.

- $R(\rho, \sigma)$ often easy to compute
- Obscures finite-size or finite-error effects

Intermediate

We will consider the intermediate regime: rates $R(n, \epsilon)$, with $n < \infty$ and $\epsilon > 0$, such that

 $\mathcal{E}\left(\rho^{\otimes n}\right) \approx_{\epsilon} \sigma^{\otimes Rn}.$

One way of assessing the resourcefulness of a state is to ask which resource interconversions are possible.

Single-shot

For which states ρ and σ do there exist free operations ${\mathcal E}$ such that

$$\mathcal{E}(\rho) = \sigma \quad \text{or} \quad \mathcal{E}(\rho) \approx_{\epsilon} \sigma.$$

- Conditions may be difficult to compute
- Doesn't tell us about large numbers of states

Asymptotic

What is the maximum rate $R(\rho, \sigma)$ such that

$$\mathcal{E}\left(\boldsymbol{\rho}^{\otimes n}\right)\approx\boldsymbol{\sigma}^{\otimes \operatorname{Rn}}$$

as $n \to \infty$.

- $R(\rho, \sigma)$ often easy to compute
- Obscures finite-size or finite-error effects

Intermediate

We will consider the intermediate regime: rates $R(n, \epsilon)$, with $n < \infty$ and $\epsilon > 0$, such that

 $\mathcal{E}\left(\rho^{\otimes n}\right) \approx_{\epsilon} \sigma^{\otimes Rn}.$

One way of assessing the resourcefulness of a state is to ask which resource interconversions are possible.

Single-shot

For which states ρ and σ do there exist free operations ${\mathcal E}$ such that

$$\mathcal{E}(\rho) = \sigma \quad \text{or} \quad \mathcal{E}(\rho) \approx_{\epsilon} \sigma.$$

- Conditions may be difficult to compute
- Doesn't tell us about large numbers of states

Asymptotic

What is the maximum rate $R(\rho, \sigma)$ such that

$$\mathcal{E}\left(\boldsymbol{\rho}^{\otimes n}\right)\approx\boldsymbol{\sigma}^{\otimes \operatorname{Rn}}$$

 $\text{ as }n\to\infty.$

- $R(\rho, \sigma)$ often easy to compute
- Obscures finite-size or finite-error effects

Intermediate

We will consider the intermediate regime: rates $R(n, \epsilon)$, with $n < \infty$ and $\epsilon > 0$, such that

 $\mathcal{E}\left(\rho^{\otimes n}\right) \approx_{\epsilon} \sigma^{\otimes Rn}.$

Majorisation-based resource theories

Entanglement

Restriction: bipartite pure-state

$$ho = |\psi\rangle\langle\psi| \qquad \sigma = |\phi\rangle\langle\phi|$$

States represented by Schmidt coefficients:

$$\begin{split} |\psi\rangle &= \sum_{i} \sqrt{p_{i}} \left| l_{i} \right\rangle \otimes \left| r_{i} \right\rangle \\ |\phi\rangle &= \sum_{i} \sqrt{q_{i}} \left| l_{i}' \right\rangle \otimes \left| r_{i}' \right\rangle \end{split}$$

Thermodynamics

Restriction: energy-incoherent states

$$[\rho,H] = [\sigma,H] = 0$$

States represented by spectra:

 $\rho = \sum_{i} p_{i} |E_{i}\rangle\langle E_{i}|$ $\sigma = \sum_{i} q_{i} |E_{i}'\rangle\langle E_{i}'|$ $\gamma = \sum_{i} \gamma_{i} |E_{i}''\rangle\langle E_{i}''|$

Majorisation:

 $oldsymbol{p} \succ oldsymbol{q} \hspace{0.1in} \Leftrightarrow \hspace{0.1in} \sum_{i=1}^k p_i^{\downarrow} \geq \sum_{i=1}^k q_i^{\downarrow} \hspace{0.1in} orall k$

Thermo-majorisation:

$$oldsymbol{p} \succ^{eta} oldsymbol{q} \ \Leftrightarrow \ \sum_{i=1}^k p_i^\downarrow \mathrm{e}^{-eta E_i} \geq \sum_{i=1}^k q_i^\downarrow \mathrm{e}^{-eta E_i} \ orall k$$

Majorisation-based resource theories

Entanglement

Restriction: bipartite pure-state

$$ho = |\psi\rangle\langle\psi| \qquad \sigma = |\phi\rangle\langle\phi|$$

States represented by Schmidt coefficients:

$$\begin{split} |\psi\rangle &= \sum_{i} \sqrt{p_{i}} \left| l_{i} \right\rangle \otimes \left| r_{i} \right\rangle \\ |\phi\rangle &= \sum_{i} \sqrt{q_{i}} \left| l_{i}' \right\rangle \otimes \left| r_{i}' \right\rangle \end{split}$$

Thermodynamics

Restriction: energy-incoherent states

$$[\rho, H] = [\sigma, H] = 0$$

States represented by spectra:

$$\rho = \sum_{i} p_{i} |E_{i}\rangle\langle E_{i}|$$

$$\sigma = \sum_{i} q_{i} |E_{i}'\rangle\langle E_{i}'|$$

$$\gamma = \sum_{i} \gamma_{i} |E_{i}''\rangle\langle E_{i}''|$$

 $\boldsymbol{p} \succ^{\beta} \boldsymbol{q} \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \sum_{i=1}^{k} p_{i}^{\downarrow} \mathrm{e}^{-\beta E_{i}} \geq \sum_{i=1}^{k} q_{i}^{\downarrow} \mathrm{e}^{-\beta E_{i}} \hspace{0.2cm} \forall k$

Majorisation

$$oldsymbol{p} \succ oldsymbol{q} \quad \Leftrightarrow \quad \sum_{i=1}^k p_i^\downarrow \geq \sum_{i=1}^k q_i^\downarrow \; orall k$$

Thermo-majorisation:

Majorisation-based resource theories

Entanglement

Restriction: bipartite pure-state

$$ho = |\psi\rangle\langle\psi| \qquad \sigma = |\phi\rangle\langle\phi|$$

States represented by Schmidt coefficients:

$$\begin{split} |\psi\rangle &= \sum_{i} \sqrt{p_{i}} \left| l_{i} \right\rangle \otimes \left| r_{i} \right\rangle \\ |\phi\rangle &= \sum_{i} \sqrt{q_{i}} \left| l_{i}' \right\rangle \otimes \left| r_{i}' \right\rangle \end{split}$$

Thermodynamics

Restriction: energy-incoherent states

$$[\rho,H] = [\sigma,H] = 0$$

States represented by spectra:

$$\rho = \sum_{i} p_{i} |E_{i}\rangle\langle E_{i}|$$

$$\sigma = \sum_{i} q_{i} |E_{i}'\rangle\langle E_{i}'|$$

$$\gamma = \sum_{i} \gamma_{i} |E_{i}''\rangle\langle E_{i}''|$$

Majorisation:

 $oldsymbol{
ho} \succ oldsymbol{q} \hspace{0.1in} \Leftrightarrow \hspace{0.1in} \sum_{i=1}^k p_i^{\downarrow} \geq \sum_{i=1}^k q_i^{\downarrow} \hspace{0.1in} orall k$

Thermo-majorisation:

$$\boldsymbol{p} \succ^{\beta} \boldsymbol{q} \iff \sum_{i=1}^{k} p_{i}^{\downarrow} \mathrm{e}^{-\beta E_{i}} \geq \sum_{i=1}^{k} q_{i}^{\downarrow} \mathrm{e}^{-\beta E_{i}} \ \forall k$$

Entanglement

In the entanglement case our results rely on the entropy and entropy variance:

$$\begin{split} H(\boldsymbol{p}) &:= -\sum_{i} p_{i} \log p_{i} = S(\mathsf{Tr}_{2} |\psi\rangle \langle \psi|) \\ H(\boldsymbol{q}) &:= -\sum_{i} q_{i} \log q_{i} = S(\mathsf{Tr}_{2} |\phi\rangle \langle \phi|) \\ V(\boldsymbol{p}) &:= \sum_{i} p_{i} (\log p_{i} + H(\boldsymbol{p}))^{2} = V(\mathsf{Tr}_{2} |\psi\rangle \langle \psi|) \\ V(\boldsymbol{q}) &:= \sum_{i} p_{i} (\log q_{i} + H(\boldsymbol{q}))^{2} = V(\mathsf{Tr}_{2} |\phi\rangle \langle \phi|) \end{split}$$

Thermodynamics

In the thermo case our results rely on the relative entropy and relative entropy variance:

$$D(\boldsymbol{p} || \boldsymbol{\gamma}) := \sum_{i} p_{i} \log \frac{p_{i}}{\gamma_{i}} = D(\rho || \boldsymbol{\gamma})$$

$$D(\boldsymbol{q} || \boldsymbol{\gamma}) := \sum_{i} q_{i} \log \frac{q_{i}}{\gamma_{i}} = D(\sigma || \boldsymbol{\gamma})$$

$$V(\boldsymbol{p} || \boldsymbol{\gamma}) := \sum_{i} p_{i} (\log p_{i} + H(\boldsymbol{p}))^{2} = V(\rho || \boldsymbol{\gamma})$$

$$V(\boldsymbol{q} || \boldsymbol{\gamma}) := \sum_{i} p_{i} (\log q_{i} + H(\boldsymbol{q}))^{2} = V(\sigma || \boldsymbol{\gamma})$$

Nielsen's Theorem

There exists an LOCC transformation $|\psi\rangle \rightarrow |\phi\rangle$ iff $\pmb{p} \prec \pmb{q}$, where

$$|\psi\rangle = \sum_{i} \sqrt{p_i} |l_i\rangle \otimes |r_i\rangle$$
 |

$$\ket{\phi} = \sum_i \sqrt{q_i} \ket{l_i'} \otimes \ket{r_i'}.$$

Thermo-Nielsen's Theorem

There exists an TO transformation $\rho \rightarrow \sigma$ iff $\boldsymbol{p} \succ^{\beta} \boldsymbol{q}$, where

$$\rho = \sum_{i} p_{i} |E_{i}\rangle\langle E_{i}| \qquad \sigma = \sum_{i} q_{i} |E_{i}'\rangle\langle$$

Nielsen's Theorem

There exists an LOCC transformation $|\psi\rangle \rightarrow |\phi\rangle$ iff $\pmb{p} \prec \pmb{q}$, where

$$|\psi\rangle = \sum_{i} \sqrt{p_{i}} |l_{i}\rangle \otimes |r_{i}\rangle$$
 $|\phi\rangle = \sum_{i} \sqrt{q_{i}} |l_{i}'\rangle \otimes |r_{i}'\rangle$

Thermo-Nielsen's Theorem

There exists an TO transformation $\rho \rightarrow \sigma$ iff $\boldsymbol{p} \succ^{\beta} \boldsymbol{q}$, where

$$\rho = \sum_{i} p_{i} |E_{i}\rangle\langle E_{i}| \qquad \sigma = \sum_{i} q_{i} |E_{i}'\rangle\langle E_{i}'|.$$

.

Resource interconversion: Asymptotic

Entanglement

The asymptotic rate of LOCC transformation is

$${\it R}^{
m (ent)}_{\infty}\left(|\psi
angle
ightarrow |\phi
angle
ight) = rac{{\it H}({m p})}{{\it H}({m q})}$$

Thermodynamics

The asymptotic rate of TO transformation is

$$R_{\infty}^{(\text{th})}(\rho \to \sigma) = \frac{D(\boldsymbol{p} \| \boldsymbol{\gamma})}{D(\boldsymbol{q} \| \boldsymbol{\gamma})}$$

Both theories are asymptotically reversible

$$\mathsf{R}_\infty(
ho o \sigma) \cdot \mathsf{R}_\infty(\sigma o
ho) = 1.$$

Resourcefulness entirely captured by the entanglement entropy/free energy

Resource interconversion: Asymptotic

Entanglement

The asymptotic rate of LOCC transformation is

$${\it R}^{
m (ent)}_{\infty}\left(|\psi
angle o |\phi
angle
ight) = rac{{\it H}({m p})}{{\it H}({m q})}$$

Thermodynamics

The asymptotic rate of TO transformation is

$$R_{\infty}^{(\text{th})}(\rho \to \sigma) = \frac{D(\boldsymbol{p} \| \boldsymbol{\gamma})}{D(\boldsymbol{q} \| \boldsymbol{\gamma})}$$

Both theories are asymptotically reversible

$$\mathcal{R}_\infty(
ho o \sigma) \cdot \mathcal{R}_\infty(\sigma o
ho) = 1.$$

Resourcefulness entirely captured by the entanglement entropy/free energy

Resource interconversion: Intermediate

Small-deviation¹²

For $\epsilon \in (0, 1)$

$$\begin{split} R_n^{(\text{ent})} &= \frac{H(\boldsymbol{p}) + \sqrt{\frac{V(\boldsymbol{p})}{n}} \cdot f_{\nu}(\epsilon)}{H(\boldsymbol{q})} + o(1/\sqrt{n}) \\ R_n^{(\text{th})} &= \frac{D(\boldsymbol{p} || \boldsymbol{\gamma}) + \sqrt{\frac{V(\boldsymbol{p} || \boldsymbol{\gamma})}{n}} \cdot f_{\nu}(\epsilon)}{D(\boldsymbol{q} || \boldsymbol{\gamma})} + o(1/\sqrt{n}) \end{split}$$

where
$$\nu := \frac{V(\mathbf{p})/H(\mathbf{p})}{V(\mathbf{q})/H(\mathbf{q})}$$

where $\nu := \frac{V(\mathbf{p}||\boldsymbol{\gamma})/D(\mathbf{p}||\boldsymbol{\gamma})}{V(\mathbf{q}||\boldsymbol{\gamma})/D(\mathbf{q}||\boldsymbol{\gamma})}$

Moderate-deviation³

For ϵ_n shrinking non-exponentially, $\epsilon_n = e^{-n^{\alpha}}$ with $\alpha \in (0, 1)$,

$$\begin{split} R_n^{(\text{ent})} &= \frac{H(p) - \sqrt{2V(p)} \left| 1 - 1/\sqrt{\nu} \right| \cdot n^{-(1-\alpha)/2}}{H(q)} + o\left(n^{-(1-\alpha)/2} \right) \\ R_n^{(\text{th})} &= \frac{D(p || \gamma) - \sqrt{2V(p || \gamma)} \left| 1 - 1/\sqrt{\nu} \right| \cdot n^{-(1-\alpha)/2}}{H(q || \gamma)} + o\left(n^{-(1-\alpha)/2} \right) \end{split}$$

¹Kumagai, Hayashi, arXiv:1306.4166, doi:10/f9tvhb (IEEE TIT)
 ²Chubb, Tomamichel, Korzekwa, arXiv:1711.01193, doi:10/c7tt (Quantum)
 ³Chubb, Tomamichel, Korzekwa, arXiv:1809.07778, doi:10/gfxbhd (PRA)

Resource interconversion: Intermediate

Small-deviation¹²

For $\epsilon \in (0, 1)$

$$\begin{split} R_n^{(\text{ent})} &= \frac{H(\boldsymbol{p}) + \sqrt{\frac{V(\boldsymbol{p})}{n}} \cdot f_{\nu}(\epsilon)}{H(\boldsymbol{q})} + o(1/\sqrt{n}) \\ R_n^{(\text{th})} &= \frac{D(\boldsymbol{p} || \boldsymbol{\gamma}) + \sqrt{\frac{V(\boldsymbol{p} || \boldsymbol{\gamma})}{n}} \cdot f_{\nu}(\epsilon)}{D(\boldsymbol{q} || \boldsymbol{\gamma})} + o(1/\sqrt{n}) \end{split}$$

where
$$u := rac{V(p)/H(p)}{V(q)/H(q)}$$
where $u := rac{V(p)/D(p||\gamma)}{V(q||\gamma)/D(q||\gamma)}$

Moderate-deviation³

For ϵ_n shrinking non-exponentially, $\epsilon_n = e^{-n^{\alpha}}$ with $\alpha \in (0, 1)$,

$$\begin{split} R_n^{(\text{ent})} &= \frac{H(\boldsymbol{p}) - \sqrt{2V(\boldsymbol{p})} \left| 1 - 1/\sqrt{\nu} \right| \cdot n^{-(1-\alpha)/2}}{H(\boldsymbol{q})} + o\left(n^{-(1-\alpha)/2}\right) \\ R_n^{(\text{th})} &= \frac{D(\boldsymbol{p} \| \boldsymbol{\gamma}) - \sqrt{2V(\boldsymbol{p} \| \boldsymbol{\gamma})} \left| 1 - 1/\sqrt{\nu} \right| \cdot n^{-(1-\alpha)/2}}{H(\boldsymbol{q} \| \boldsymbol{\gamma})} + o\left(n^{-(1-\alpha)/2}\right) \end{split}$$

¹Kumagai, Hayashi, arXiv:1306.4166, doi:10/f9tvhb (IEEE TIT)
 ²Chubb, Tomamichel, Korzekwa, arXiv:1711.01193, doi:10/c7tt (Quantum)
 ³Chubb, Tomamichel, Korzekwa, arXiv:1809.07778, doi:10/gfxbhd (PRA)

• All of these expressions exhibit irreversibility for low error

$$R_n(
ho o \sigma) \cdot R_n(\sigma o
ho) \leq 1$$

• The quantity ν quantifies the magnitude of the finite-size effect (up to second order),

$$\nu = 1 \quad \Longleftrightarrow \quad R_n(\rho \to \sigma) \cdot R_n(\rho \to \sigma) = 1$$

• By tuning out states such that $\nu = 1$, we can mitigate finite-size effects

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$H(p_1) = H(q) = H(p_2)$$

 $V(p_1) < V(q) < V(p_2).$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$egin{aligned} &|\psi_1
angle^{\otimes\lambda n}\otimes|\psi_2
angle^{\otimes(1-\lambda)n}\ &\lambdapproxrac{V(m{q})-V(m{p}_2)}{V(m{p}_1)-V(m{p}_2)} \end{aligned}$$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$\begin{aligned} H(\boldsymbol{p}_1) &= H(\boldsymbol{q}) = H(\boldsymbol{p}_2) \\ V(\boldsymbol{p}_1) &< V(\boldsymbol{q}) < V(\boldsymbol{p}_2). \end{aligned}$$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$egin{aligned} &|\psi_1
angle^{\otimes\lambda n}\otimes|\psi_2
angle^{\otimes(1-\lambda)n}\ &\lambdapproxrac{V(m{q})-V(m{p}_2)}{V(m{p}_1)-V(m{p}_2)} \end{aligned}$$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$H(p_1) = H(q) = H(p_2)$$

 $V(p_1) < V(q) < V(p_2).$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$ert \psi_1
angle^{\otimes \lambda n} \otimes ert \psi_2
angle^{\otimes (1-\lambda)n}$$

 $\lambda pprox rac{V(oldsymbol{q}) - V(oldsymbol{p}_2)}{V(oldsymbol{p}_1) - V(oldsymbol{p}_2)}$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$H(p_1) = H(q) = H(p_2)$$

 $V(p_1) < V(q) < V(p_2).$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$ert \psi_1
angle^{\otimes \lambda n} \otimes ert \psi_2
angle^{\otimes (1-\lambda)n}$$

 $\lambda pprox rac{V(oldsymbol{q}) - V(oldsymbol{p}_2)}{V(oldsymbol{p}_1) - V(oldsymbol{p}_2)}$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$\begin{split} & H(\boldsymbol{p}_1) = H(\boldsymbol{q}) = H(\boldsymbol{p}_2) \\ & V(\boldsymbol{p}_1) < V(\boldsymbol{q}) < V(\boldsymbol{p}_2). \end{split}$$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$egin{aligned} &|\psi_1
angle^{\otimes\lambda n}\otimes|\psi_2
angle^{\otimes(1-\lambda)n}\ &\lambdapproxrac{V(m{q})-V(m{p}_2)}{V(m{p}_1)-V(m{p}_2)} \end{aligned}$$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$\begin{aligned} & H(\boldsymbol{p}_1) = H(\boldsymbol{q}) = H(\boldsymbol{p}_2) \\ & V(\boldsymbol{p}_1) < V(\boldsymbol{q}) < V(\boldsymbol{p}_2). \end{aligned}$$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$ert \psi_1
angle^{\otimes \lambda n} \otimes ert \psi_2
angle^{\otimes (1-\lambda)n}$$

 $\lambda pprox rac{V(oldsymbol{q}) - V(oldsymbol{p}_2)}{V(oldsymbol{p}_1) - V(oldsymbol{p}_2)}$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$H(p_1) = H(q) = H(p_2)$$

 $V(p_1) < V(q) < V(p_2).$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$ert \psi_1
angle^{\otimes \lambda n} \otimes ert \psi_2
angle^{\otimes (1-\lambda)n}$$

 $\lambda pprox rac{V(oldsymbol{q}) - V(oldsymbol{p}_2)}{V(oldsymbol{p}_1) - V(oldsymbol{p}_2)}$

We have access to copies of $|\psi_1\rangle$ or $|\psi_2\rangle$, and want to create copies of $|\phi\rangle$, where

$$H(p_1) = H(q) = H(p_2)$$

 $V(p_1) < V(q) < V(p_2).$

Asymptotically we expect $R_{\infty} = 1$ for either $|\psi_1\rangle$ or $|\psi_2\rangle$.

$$egin{aligned} &|\psi_1
angle^{\otimes\lambda n}\otimes|\psi_2
angle^{\otimes(1-\lambda)n}\ &\lambdapproxrac{V(m{q})-V(m{p}_2)}{V(m{p}_1)-V(m{p}_2)} \end{aligned}$$

Resonance example 2: Thermodynamics

Consider a heat engine, with a working body of n = 200 qubits.

There is a cold bath at temperature T_c and hot bath at temperature $T_h = 1$, and the engine is operated between $T_c \leftrightarrow T_{c'}$.

C.T. Chubb (USyd) Resonances in finite-resource interconversion

Conclusions and further work

- We have investigated a resonance phenomena in majorisation-based resonance theorems
- Can this be used in near-term/NISQ experiments?
- Can we can drop the restrictions (mixed-state entanglement, energy-coherent thermo)?
- Does an analogous phenomenon occur for non-majorisation-based resource theories (e.g. magic)?

ArXiv: 1810.02366 Doi: 10/gfxb5z (PRL)

Thank you!

me@christopherchubb.com

- ℅ christopherchubb.com
 - @QuantumChubb