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Marco Tomamichel (USyd→UTS)

Resonance: 1810.02366 10/gfxb5z (PRL)
Moderate: 1809.07778 10/gfxbhd (PRA)
Small: 1711.01193 10/c7tt (Quantum)

UTS 2019-08-19



Resource Theories

Resource theories describe the
physics of constrained systems

Defined by sets of free states and
free operations

Any non-free state is a resource
state

How do we quantify the
resourcefulness of a state? Free States

R
esou

rce
states
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Resource Theories

Resource theory Physical constraint Free operations Free states

Entanglement Physical separation
Local operations and

classical communication
Separable states

Thermodynamics Laws of Thermodynamics Thermal operations Thermal state

Coherence
Inability to create coherent

superpositions in a specific basis
Incoherent operations Incoherent states

Purity Inability to purify states Unital operations Maximally mixed state

Entanglement (bipartite)

Separable states:

ρ =
∑
i

piρ
A
i ⊗ ρBi

Local ops. and classical communication:

E(ρ) =
∑
a

(I ⊗ Ea)
(

(Ma ⊗ I )ρ(M†a ⊗ I )
)

Thermodynamics

Thermal state:

γ = e−βH/Tr e−βH

Thermal operations:

E(ρ) = TrB U(ρ⊗ γk)U† [U,H] = 0
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Resource interconversion problem

One way of assessing the resourcefulness of a state is to ask which resource
interconversions are possible.

Single-shot
For which states ρ and σ do there exist
free operations E such that

E(ρ) = σ or E(ρ) ≈ε σ.

Conditions may be difficult to
compute

Doesn’t tell us about large
numbers of states

Asymptotic
What is the maximum rate R such that

E
(
ρ⊗n) ≈ σ⊗Rn

as n→∞.

R often easier to compute

Obscures finite-size or finite-error
effects

Intermediate
We will consider the intermediate regime: rates R(n, ε), with n <∞ and ε > 0, such that

E
(
ρ⊗n) ≈ε σ

⊗Rn.
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Majorisation-based resource theories

Entanglement

Restriction: bipartite pure-state

ρ = |ψ〉〈ψ| σ = |φ〉〈φ|

Thermodynamics

Restriction: energy-incoherent states

[ρ,H] = [σ,H] = 0

States represented by Schmidt
coefficients:

|ψ〉 =
∑

i

√
pi |li 〉 ⊗ |ri 〉

|φ〉 =
∑

i

√
qi |l ′i 〉 ⊗ |r ′i 〉

States represented by spectra:

ρ =
∑

i
pi |Ei 〉〈Ei |

σ =
∑

i
qi |E ′i 〉〈E ′i |

γ =
∑

i
γi |E ′′i 〉〈E ′′i |

Majorisation:

p � q ⇔
k∑

i=1

p↓i ≥
k∑

i=1

q↓i ∀k

Thermo-majorisation:

p �β q ⇔
k∑

i=1

p↓i e
−βEi ≥

k∑
i=1

q↓i e
−βEi ∀k

⇔ p̂ � q̂
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Resource interconversion: Single-shot

Nielsen’s theorem

There exists an LOCC transformation |ψ〉 → |φ〉 iff p ≺ q, where

|ψ〉 =
∑
i

√
pi |li 〉 ⊗ |ri 〉 |φ〉 =

∑
i

√
qi |l ′i 〉 ⊗ |r ′i 〉 .

Thermo-Nielsen’s theorem

There exists an TO transformation ρ→ σ iff p �β q, where

ρ =
∑
i

pi |Ei 〉〈Ei | σ =
∑
i

qi |E ′i 〉〈E ′i | .
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Approximate majorisation

If we only require approximate interconversion we need to relax the notion of
majorisation as well:

A distribution p ε-pre-majorises a distribution q, which we denote p ε� q, if
there exists a p̃ such that

p̃ � q and δ(p, p̃) ≤ ε.

A distribution p ε-post-majorises a distribution q, which we denote p �ε q, if
there exists a q̃ such that

p � q̃ and δ(q, q̃) ≤ ε.

ε ε

p q
p � q

p̃

q̃

p ε�q

p �ε q

p̂ �✏ q̂ p ��
✏ q

p̂ ✏�q̂ p ✏��q

Lem. 13
(====)

L
em

.
1
2

(=
=
=
=)

Lem. 14
(=====
=====)

(
=
=
==

==
=
=)

Approximate Nielsen’s theorem

There exists an LOCC transformation
|ψ〉 → |φ̃〉 with |〈φ|φ̃〉|2 ≥ 1− ε iff
p ≺ε q.

And similar for thermal majorisation...
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Asymptotic notation

Entanglement

In the entanglement case our results
rely on the entropy and varentropy:

H(p) :=−
∑
i

pi log pi

=S(Tr2 |ψ〉〈ψ|)
V (p) :=

∑
i

pi (log pi + H(p))2

=V (Tr2 |ψ〉〈ψ|)

Thermodynamics

In the thermo case our results rely on
the relative entropy and relative
varentropy:

D(p‖γ) :=
∑
i

pi log
pi
γi

=D(ρ‖γ)

V (p‖γ) :=
∑
i

pi (log pi + H(p))2

=V (ρ‖γ)
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Resource interconversion: Asymptotic

Entanglement

The asymptotic rate of LOCC
transformation is

R(ent)
∞ (|ψ〉 → |φ〉) =

H(p)

H(q)

Thermodynamics

The asymptotic rate of TO
transformation is

R(th)
∞ (ρ→ σ) =

D(p‖γ)

D(q‖γ)

Both theories are asymptotically
reversible

R∞(ρ→ σ) · R∞(σ → ρ) = 1.

Resourcefulness entirely captured by
the entanglement entropy/free
energy

H
(p

)

D
(p
‖γ

)
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Deviation analyses

We know what R∞ is, but how does Rn → R∞?

n = 10, 000

n = 1

R

ε

R∞
0

1
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Deviation analyses

We know what R∞ is, but how does Rn → R∞?
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R

ε

R∞
0

1
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Deviation analyses

We know what R∞ is, but how does Rn → R∞?

n = 10, 000

Rn = R∞ ±Θ(1/
√
n)

R

ε

R∞
0

1
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Deviation analyses

We know what R∞ is, but how does Rn → R∞?

n = 10, 000

εn = e−Θ(n)

R

ε

R∞
0

1
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Deviation analyses

We know what R∞ is, but how does Rn → R∞?

n = 10, 000

R

ε

R∞
0

1

Rn = R∞ + Θ(n(1−α)/2)

εn = e−Θ(nα)
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Resource interconversion: Small deviations

Small-deviation12

For ε ∈ (0, 1)

R(ent)
n,ε =

H(p) +
√

V (p)
n · Z−1

ν (ε)

H(q)
+ +o

(
1√
n

)
, ν :=

V (p)/H(p)

V (q)/H(q)
,

R(th)
n,ε =

D(p‖γ) +
√

V (p‖γ)
n · Z−1

ν (ε)

D(q‖γ)
+ o

(
1√
n

)
, ν :=

V (p‖γ)/D(p‖γ)

V (q‖γ)/D(q‖γ)
.

Properties of the Rayleigh-normal distribution:

We have Z−1
ν (ε) > 0 for all ε > 0 if ν = 1.

We have Z−1
ν (ε) = Φ−1(ε) if ν = 0, i.e. if V (p) = 0. This happens for

example when we convert from a maximally entangled state.

1Kumagai, Hayashi, arXiv:1306.4166, doi:10/f9tvhb (IEEE TIT)
2Chubb, Tomamichel, Korzekwa, arXiv:1711.01193, doi:10/c7tt (Quantum)
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Rayleigh-normal distribution: Zν(µ)

The formal defintion:1

Zν(µ) := 1− sup
A≥Φ
F
(
A′,Φ′µ,ν

)
,

where the supremum is taken over all monotone increasing and continuously
differentiable A : R→ [0, 1] such that A ≥ Φ pointwise.
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Resource interconversion: Moderate deviations

Often we care more about the case of asymptotically vanishing error.

Good news: we do not need to deal with Rayleigh-normal distributions!

Moderate-deviation3

For εn shrinking non-exponentially, εn = e−n
α

with α ∈ (0, 1),

R(ent)
n,εn =

H(p)−
√

2V (p) |1− 1/
√
ν| · n−(1−α)/2

H(q)
+ o

(
n−(1−α)/2

)
R(th)
n,εn =

D(p‖γ)−
√

2V (p‖γ) |1− 1/
√
ν| · n−(1−α)/2

D(q‖γ)
+ o

(
n−(1−α)/2

)

3Chubb, Tomamichel, Korzekwa, arXiv:1809.07778, doi:10/gfxbhd (PRA)
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Resource resonance

All of these expressions exhibit irreversibility for low error

Rn,ε(ρ→ σ) · Rn,ε(σ → ρ) < 1

The quantity ν quantifies the magnitude of the finite-size effect (up to
second order),

ν = 1 ⇐⇒ Rn,ε(ρ→ σ) · Rn,ε(ρ→ σ) = 1

By tuning out states such that ν = 1, we can mitigate finite-size effects
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Resonance example 1: Entanglement

We have access to copies of |ψ1〉 or |ψ2〉,
and want to create copies of |φ〉, where

H(p1) = H(q) = H(p2)

V (p1) < V (q) < V (p2).

Asymptotically we expect R∞ = 1 for
either |ψ1〉 or |ψ2〉.

To lower the error for a fixed n, we
should pick a resonant input state

|ψ1〉⊗λn ⊗ |ψ2〉⊗(1−λ)n

λ ≈ V (q)− V (p2)

V (p1)− V (p2) 0.9 1 1.1

10−5

10−4

10−3

ν

ε

0 0.25 0.5 0.75 1

λ
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0 0.25 0.5 0.75 1

λ
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10−3

ν

ε
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0 0.25 0.5 0.75 1

λ
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Resonance example 1: Entanglement

We have access to copies of |ψ1〉 or |ψ2〉,
and want to create copies of |φ〉, where

H(p1) = H(q) = H(p2)

V (p1) < V (q) < V (p2).

Asymptotically we expect R∞ = 1 for
either |ψ1〉 or |ψ2〉.

To lower the error for a fixed n, we
should pick a resonant input state

|ψ1〉⊗λn ⊗ |ψ2〉⊗(1−λ)n

λ ≈ V (q)− V (p2)

V (p1)− V (p2) 0.9 1 1.1

10−5

10−4

10−3

ν

ε

n = 20

0 0.25 0.5 0.75 1

λ
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Resonance example 1: Entanglement
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and want to create copies of |φ〉, where

H(p1) = H(q) = H(p2)

V (p1) < V (q) < V (p2).

Asymptotically we expect R∞ = 1 for
either |ψ1〉 or |ψ2〉.

To lower the error for a fixed n, we
should pick a resonant input state

|ψ1〉⊗λn ⊗ |ψ2〉⊗(1−λ)n

λ ≈ V (q)− V (p2)

V (p1)− V (p2) 0.9 1 1.1

10−5

10−4

10−3

ν

ε

n = 25

0 0.25 0.5 0.75 1

λ
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Resonance example 1: Entanglement

We have access to copies of |ψ1〉 or |ψ2〉,
and want to create copies of |φ〉, where

H(p1) = H(q) = H(p2)

V (p1) < V (q) < V (p2).

Asymptotically we expect R∞ = 1 for
either |ψ1〉 or |ψ2〉.

To lower the error for a fixed n, we
should pick a resonant input state

|ψ1〉⊗λn ⊗ |ψ2〉⊗(1−λ)n

λ ≈ V (q)− V (p2)
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Resonance example 2: Thermodynamics

Consider a heat engine, with a working body of n = 200 qubits.

There is a cold bath at temperature Tc and hot bath at temperature Th = 1, and
the engine is operated between Tc ↔ Tc′ .

W = .95 ·WC ε = 10−3
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Structure of asymptotically reversible resource theories

If we only look at first order
asymptotics:
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If we look at higher order asymptotics
(second-order or moderate deviation):
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Conclusions and further work

We have investigated a resonance phenomena in majorisation-based resource
theories.

Can this be used in near-term/NISQ experiments?

Can we can drop some of the restrictions (e.g. energy-coherent thermo,
mixed-state entanglement)?

Does an analogous phenomenon occur for non-majorisation-based resource
theories (e.g. magic)?

Resonance: 1810.02366 10/gfxb5z (PRL)
Moderate: 1809.07778 10/gfxbhd (PRA)
Small: 1711.01193 10/c7tt (Quantum)

Thank you!
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