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Quantum codes

More generally, two important questions arise for any quantum code:

How do I decode?

What is the threshold?

The statistical mechanical mapping1 allows us to systematically address both questions for
codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical
stat mech model.

By combining this with a novel tensor network contraction scheme we get a general and
approximately optimal decoder for any 2D code.

1Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143
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Statistical mechanical mapping

Stabiliser code
& Pauli noise

−→ Disordered statistical
mechanical model

Threshold ←→ Phase transition

Decoding ←→ Calculating partition
functions

Allows us to reappropriate techniques for studying stat mech systems to study quantum
codes, e.g.

Threshold
approximation

←− Monte Carlo simulation

Optimal decoding ←− Partition function
calculation

5 / 28



SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase
transition

Correlated case

Tensor network
decoding

Codes studied

Results

Conclusion

Statistical mechanical mapping

Stabiliser code
& Pauli noise

−→ Disordered statistical
mechanical model

Threshold ←→ Phase transition

Decoding ←→ Calculating partition
functions

Allows us to reappropriate techniques for studying stat mech systems to study quantum
codes, e.g.

Threshold
approximation

←− Monte Carlo simulation

Optimal decoding ←− Partition function
calculation

5 / 28



SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase
transition

Correlated case

Tensor network
decoding

Codes studied

Results

Conclusion

Statistical mechanical mapping

Stabiliser code
& Pauli noise

−→ Disordered statistical
mechanical model

Threshold ←→ Phase transition

Decoding ←→ Calculating partition
functions

Allows us to reappropriate techniques for studying stat mech systems to study quantum
codes, e.g.

Threshold
approximation

←− Monte Carlo simulation

Optimal decoding ←− Partition function
calculation

5 / 28



SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase
transition

Correlated case

Tensor network
decoding

Codes studied

Results

Conclusion

Our results

Stat mech mapping:

Generalise the mapping to correlated noise for arbitrary subsystem codes

Numerically study the toric code with mildly correlated errors

Show how circuit noise can be studied, allowing for fault-tolerant thresholds to be
approximated

Generalise the tensor network decoder of Bravyi, Suchara and Vargo

Tensor network decoding:

Develop a linearithmic contraction algorithm for 2D tensor networks

Apply this to several surface/colour codes, including irregular codes

Provide evidence for a conjecture about surface code thresholds
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Independent case: Hamiltonian

Let JA,BK be the scalar commutator of two Paulis, such that AB =: JA,BKBA.

For a stabiliser code generated by {Sk}k , and an error Pauli E , the (disordered)
Hamiltonian HE is defined

HE (~s) := −
∑
i

∑
σ∈Pi

Coupling︷ ︸︸ ︷
Ji (σ)

Disorder︷ ︸︸ ︷
Jσ,EK

DoF︷ ︸︸ ︷∏
k:Jσ,SkK=−1

sk

for sk = ±1, and coupling strengths Ji (σ) ∈ R.

Take-aways:

Ising-type, with interactions corresponding to single-site Paulis σ
Disorder E flips some interactions (Ferro ↔ Anti-ferro)
Local code =⇒ local stat mech model
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Independent case: Gauge symmetry

HE (~s) = −
∑
i

∑
σ∈Pi

Ji (σ)Jσ,EK
∏

k:Jσ,SkK=−1

sk

Using JA,BK JA,CK = JA,BCK, we see this system has a gauge symmetry

sk → −sk and E → ESk .

This gauge symmetry will capture the logical equivalence of errors, ZE = ZESk
.
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Independent case: Nishimori conditon

Suppose we have an independent error model

Pr(E ) =
∏
i

pi (Ei ),

we now want ZE = Pr(E ), E is the error class

E := {ES |S ∈ S} .

Using the gauge symmetry we have that the partition function can be written as a sum
stabiliser-equivalent errors

ZE =
∑
~s

e−βHE (~s) =
∑
S

e−βHES (~1) =
∑
F∈E

e−βHF (~1).

If we select the coupling strength such that e−βHE (~1) = Pr(E ), then ZE = Pr(E ) will follow.
9 / 28
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Independent case: Nishimori condition

We now want to pick our couplings such that e−βHE (~1) = Pr(E ). Expanding this out, we
get ∑

i

log pi (E ) = −
∑
i

∑
σ

βJi (σ) Jσ,EK.

Using the Fourier-like orthogonality relation 1
4

∑
σ Jσ, τK = δτ,I , this becomes

Nishimori condition: βJi (σ) =
1

4

∑
τ∈P

log pi (τ) Jσ, τK ,

which implies e−βHE (~1) = Pr(E ), and therefore ZE = Pr(E ).

This intrinsically links the error correcting behavior of the code to the thermodynamic
behavior of the model (along the Nishimori line).
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Toric code and the random-bond Ising model

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

sv = ±1 on each vertex v

Step 2: Interactions

HI = −
∑
v∼v′

J sv sv′

Step 3: Disorder

HE = −
∑
v∼v′

Jevv′ sv sv′

where evv′ =

{
+1 Evv′ = I ,

−1 Evv′ = X .
11 / 28
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Pr(Xe) = p, Pr(Ie) = 1− p.
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Other independent examples

Toric code

Bit-flip → Random-bond Ising1

Indep. X&Z → 2×Random-bond Ising
Depolarising → Random 8-vertex model2

X

Colour code

Bit-flip → Random 3-spin Ising
Indep. X&Z→ 2×Random 3-spin Ising

Depolarising → Random interacting 8-vertex2

X Z

Y

1Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143
2Bombin et.al., PRX 2012, doi:10/crz5, arXiv:1202.1852
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Error correction threshold as a quenched phase transition

Consider the free energy cost of a logical error L,

∆E (L) = − 1

β
logZEL +

1

β
logZE .

Along the Nishimori line

∆E (L) =
1

β
log

Pr(E )

Pr(EL)
,

which implies

Below threshold : ∆E (L)→∞ (in mean)

Above threshold : ∆E (L)→ 0 (in prob.)
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Phase diagram sketch

Noise parameter
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ML threshold

ME threshold

Ordered
EC possible

∆E (L)→∞

Disordered
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Correlated case

The key point independence gave us was the ability to factor our noise model

Pr(E ) =
∏
i

pi (Ei ).

We can generalise this to correlated models:

Factored distribution

An error model factors over regions {Rj}j if there exist φj : PRj → R such that

Pr(E ) =
∏
j

φj
(
ERj

)
This model includes many probabilistic graphical models, such as Bayesian Networks and
Markov/Gibbs Random Fields.
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Correlated case

By construction, we can extend to the correlated case by changing σ ∈ Pi to σ ∈ PRj :

HE (~s) := −
∑
j

∑
σ∈PRj

Jj(σ) Jσ,EK
∏

k:Jσ,SkK=−1

sk

Nishimori condition: βJj(σ) =
1

|PRj |
∑
τ∈PRj

log φj(τ) Jσ, τK ,

As before we get that ZE = Pr(E ), and so the threshold manifests as a phase transition.
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Correlated example

Toric code with correlated bit-flips
Correlations induce longer-range interactions
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‘Across plaquette’ correlated bit-flips

e e′

Model specified by

Pr(Ie |Ie′) Pr(Ie |Xe′)

Pr(Xe |Ie′) Pr(Xe |Xe′)

for all neighbouring edges e and e′.

Convenient parameterisation:

p := Pr(Xe), η :=
Pr(Xe |Xe′)

Pr(Xe |Ie′)
.
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Monte Carlo simulations
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Marginal error probability p(%)
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T

η = 1 (indep.)

η = 2 (corr.)

Thresholds

Indep.: pth = 10.917(3)%1,2

Corr.: pth = 10.04(6)%

1Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143
2Toldin et.al., JSP 2009, doi:10/c3r2kc, arXiv:0811.2101

19 / 28



SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase
transition

Correlated case

Tensor network
decoding

Codes studied

Results

Conclusion

Decoding

Can the stat mech model give us a decoder?

If an error E occurs, a decoder needs to select one of the degenerate logical error classes

E EL1 EL2 EL3 . . .

The optimal (maximum likelihood) decoder selects the most likely class

DML = ELl where l = argmax
l

Pr
(
ELl
)
.
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Decoding from partition functions

Along the Nishimori line, the maximum likelihood condition corresponds to maximising the
partition function

l = argmax
l

ZELl
.

Approximating ZELl
therefore allows us to approximate the ML decoder.

Step 1: Measure the syndrome s

Step 2: Construct an arbitrary error Cs which has syndrome s

Step 3: Approximate ZCsLl
= Pr(CsLl) for each logical l

Step 4: Find the l such that ZCsLl
is maximised

Step 5: Apply (CsLl)
−1
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ML decoding as a tensor network

XX X

X

ZZ Z

Z

X
X

X

X

Z
Z

Z

Z

X
X

X X

Z
Z

Z Z

σ

σ′
σ′′σ

′′′
=

{
1 if σ=σ′ =σ′′ =σ′′′

0 otherwise

τ

τ ′ τ ′′= pi (τ · τ ′ · τ ′′ · Ei )

Partition functions, and thus error class
probabilities, can be expressed as tensor
networks2,3.

There is a tensor for each qubit, and for
each stabiliser

By approximating these class
probabilities we can find the ML error

2Verstraete et. al., PRL 2006, doi:10/dfgcz8, arXiv:quant-ph/0601075
3Bridgeman and Chubb, JPA 2017, doi:10/cv7m, arXiv:1603.03039

22 / 28



SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase
transition

Correlated case

Tensor network
decoding

Codes studied

Results

Conclusion

Sweepline contraction algorithm

We sweep along the network, using lossy compression of Matrix Product States

To do this for general graphs we need to use a sweepline approach

I’m going to release a general purpose Julia implementation of this soon.
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Surface codes on different lattices

How does the surface code perform on different lattices/graphs?

Raise or lower the connectivity Irregular graphs
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Non-SC topological models

We also want to capture 2D models that aren’t (ostensibly) surface codes.

Colour code Subsystem surface code
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Thresholds

Bit-flip Phase-flip Depolarising

Observed Upper bound Observed Upper bound Observed Upper bound

Surface code (reg.)

Square 10.917(5)% 10.9187% 10.917(5)% 10.9187% 18.81(3)% 18.9(3)%

Tri./Hex. 16.341(7)% 16.4015% 6.748(5)% 6.7407% 13.81(7)% ?

Kag./Rho. 9.875(5)% ? 11.910(6)% ? 18.09(4)% ?

T.H./Asa. 4.297(7)% ? 20.701(13)% ? 9.07(8)% ?

Surace code (irr.)

Rand. Tri. 17.128(15)% ? 6.237(9)% ? 12.85(3)% ?

Rand. Quad. 12.195(12)% ? 9.715(11)% ? 18.05(3)% ?

Subsystem SC

Square 6.705(13)% 6.7407% 6.705(13)% 6.7407% 11.23(3)% ?

Colour Code

Hexagonal 10.910(5)% 10.9(2)% 10.910(5)% 10.9(2)% 18.68(2)% 18.9(3)%
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Surface code saturating the Hashing Bound

We find a trade-off between the
X and Z thresholds.

Thresholds saturate the hashing
bound

h(τx) + h(τz) ≤ 1

Pair matching studied earlier by
Fujii et.al.4
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4Fujii et.al., doi.org/d5sb, arXiv:1202.2743
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We find a trade-off between the
X and Z thresholds.
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bound
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Pair matching studied earlier by
Fujii et.al.4

Entropy

MWPM1 TN

Regular

Square 0.957 0.9948(3)

Tri./Hex. 0.979 0.9989(3)

Kag./Rho. 0.971 0.9918(3)

T.H./Asa. 0.979 0.9915(6)

Irregular

Rand. Tri. ? 0.9974(7)

Rand. Quad. ? 0.9948(7)

4Fujii et.al., doi.org/d5sb, arXiv:1202.2743
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Future work

Stat mech mapping beyond Pauli codes

Using the stat mech mapping for more than the threshold

TN decoding of correlated noise

TN decoding in 3D (including noisy 2D) and beyond, LDPCs, etc.

Thank you!

Stat mech mapping: arXiv:1809.10704, to appear in AIHPD
Tensor network decoding: arXiv:2101.04125
Tensor contracting package: Coming soon!

R me@christopherchubb.com

® christopherchubb.com

7 @QuantumChubb

28 / 28


	Introduction
	Independent case
	EC as a phase transition
	Correlated case
	Tensor network decoding
	Codes studied
	Results
	Conclusion

