Statistical mechanical models and tensor network decoding for quantum codes

Christopher T. Chubb ETH Zürich

Stat mech mapping (with Steve Flammia, AWS) arXiv:2101.04125, to appear in AIHP:D

2D tensor network decoding arXiv:2101.04125

Tensor contraction Julia package Coming soon!

Contents

SMM+TND

C.T. Chubb

- Introduction
- Independent case
- EC as a phase transition
- Correlated case
- Tensor network decoding
- Codes studi
- Results
- Conclusion

Introduction

- Independent case
- EC as a phase transition
- 4 Correlated case
- 5 Tensor network decoding
- 6 Codes studied
- Results

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes studie

Results

Conclusior

More generally, two important questions arise for any quantum code:

- How do I decode?
- What is the threshold?

The statistical mechanical mapping¹ allows us to systematically address both questions for codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical stat mech model.

¹Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes studie

Results

Conclusion

More generally, two important questions arise for any quantum code:

- How do I decode optimally?
- What is the threshold?

The statistical mechanical mapping¹ allows us to systematically address both questions for codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical stat mech model.

¹Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes studie

Results

Conclusior

More generally, two important questions arise for any quantum code:

- How do I decode optimally?
- What is the fault-tolerant threshold?

The statistical mechanical mapping¹ allows us to systematically address both questions for codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical stat mech model.

¹Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

More generally, two important questions arise for any quantum code:

- How do I decode optimally?
- What is the fault-tolerant threshold?

The statistical mechanical mapping¹ allows us to systematically address both questions for codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical stat mech model.

¹Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

More generally, two important questions arise for any quantum code:

- How do I decode optimally?
- What is the fault-tolerant threshold?

The statistical mechanical mapping¹ allows us to systematically address both questions for codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical stat mech model.

¹Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

More generally, two important questions arise for any quantum code:

- How do I decode optimally?
- What is the fault-tolerant threshold?

The statistical mechanical mapping¹ allows us to systematically address both questions for codes subject to stochastic Pauli noise.

It achieves this by mapping the answers onto the phase boundary of a disordered classical stat mech model.

¹Dennis, Kitaev, Landahl, Preskill, JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

SMM+TND				
C.T. Chubb	Stabiliser code		Disordered statistical	
Introduction	& Pauli noise		mechanical model	
Independent case	Threshold	\longleftrightarrow	Phase transition	
EC as a phase transition	Threshold			
Correlated case	Deceding		Calculating partition functions	
Tensor network decoding	Decoding	\longleftrightarrow		
Codes studied				
Results	Allows us to reappropriate techniques for studying stat mech systems to study quantum			
	codes, e.g.			
	Threshold approximation	\leftarrow	Monte Carlo simulation	
	Optimal decoding	<i>~</i>	Partition function calculation	

Intr

MM+TND	• • • • • •		
C.T. Chubb	Stabiliser code	\longrightarrow	Disordered statistical
oduction	& Fault hoise		mechanical model
ependent case	Threshold	\longleftrightarrow	Phase transition
as a phase sition	1 meshold		
related case			Calculating partition
sor network oding	Decoding	\longleftrightarrow	functions
les studied			

Allows us to reappropriate techniques for studying stat mech systems to study quantum codes, e.g.

Threshold approximation

Optimal decoding

Monte Carlo simulation

Partition function calculation

SMM+TND	• • • • • •		Disordered statistical mechanical model		
C.T. Chubb	Stabiliser code	\longrightarrow			
Introduction	& Pauli hoise				
Independent case	Threshold	\longleftrightarrow	Phase transition		
EC as a phase transition	Theshold				
Correlated case	Decediar	, .	Calculating partition functions		
Tensor network decoding	Decoding	\longleftrightarrow			
Codes studied	Allows us to reappropriate techniques for studying stat mech systems to study quantum				
Results					
	codes, e.g.				
	Threshold approximation	<i>~</i>	Monte Carlo simulation		
	Optimal decoding	<i>~</i>	Partition function calculation		

Our results

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor networl decoding

Codes studie

Results

Conclusion

Stat mech mapping:

- Generalise the mapping to correlated noise for arbitrary subsystem codes
- Numerically study the toric code with mildly correlated errors
- Show how circuit noise can be studied, allowing for fault-tolerant thresholds to be approximated
- Generalise the tensor network decoder of Bravyi, Suchara and Vargo

Tensor network decoding:

- Develop a linearithmic contraction algorithm for 2D tensor networks
- Apply this to several surface/colour codes, including irregular codes
- Provide evidence for a conjecture about surface code thresholds

Our results

SMM+TND

C.T. Chubb

Introduction

ndependent case

EC as a phase transition

Correlated case

Tensor networl decoding

Codes studie

Results

Conclusion

Stat mech mapping:

- Generalise the mapping to correlated noise for arbitrary subsystem codes
- Numerically study the toric code with mildly correlated errors
- Show how circuit noise can be studied, allowing for fault-tolerant thresholds to be approximated
- Generalise the tensor network decoder of Bravyi, Suchara and Vargo

Tensor network decoding:

- Develop a linearithmic contraction algorithm for 2D tensor networks
- Apply this to several surface/colour codes, including irregular codes
- Provide evidence for a conjecture about surface code thresholds

Independent case: Hamiltonian

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Let $\llbracket A, B \rrbracket$ be the scalar commutator of two Paulis, such that $AB =: \llbracket A, B \rrbracket BA$.

For a stabiliser code generated by $\{S_k\}_k$, and an error Pauli *E*, the (disordered) Hamiltonian *H_E* is defined

$$H_{E}(\vec{s}) := -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} \underbrace{J_{i}(\sigma)}_{\mathcal{J}(\sigma)} \underbrace{\mathbb{I}[\sigma, E]}_{k: \llbracket \sigma, S_{k} \rrbracket = -1} \underbrace{\mathsf{DoF}}_{k: \llbracket \sigma, S_{k} \rrbracket = -1}$$

for $s_k = \pm 1$, and coupling strengths $J_i(\sigma) \in \mathbb{R}$.

Take-aways:

- ullet lsing-type, with interactions corresponding to single-site Paulis σ
- Disorder *E* flips some interactions (Ferro \leftrightarrow Anti-ferro)
- \bullet Local code \implies local stat mech model

Independent case: Hamiltonian

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Let $\llbracket A, B \rrbracket$ be the scalar commutator of two Paulis, such that $AB =: \llbracket A, B \rrbracket BA$.

For a stabiliser code generated by $\{S_k\}_k$, and an error Pauli *E*, the (disordered) Hamiltonian H_E is defined

$$H_{E}(\vec{s}) := -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} \underbrace{\overbrace{J_{i}(\sigma)}^{\text{Coupling Disorder}}}_{\sigma \in \mathcal{P}_{i}} \underbrace{\overbrace{[\sigma, E]}^{\text{DoF}}}_{k: [[\sigma, S_{k}]] = -1} s_{k}$$

for $s_k = \pm 1$, and coupling strengths $J_i(\sigma) \in \mathbb{R}$.

Take-aways:

- ullet lsing-type, with interactions corresponding to single-site Paulis σ
- Disorder *E* flips some interactions (Ferro \leftrightarrow Anti-ferro)
- \bullet Local code \implies local stat mech model

Independent case: Hamiltonian

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Let $\llbracket A, B \rrbracket$ be the scalar commutator of two Paulis, such that $AB =: \llbracket A, B \rrbracket BA$.

For a stabiliser code generated by $\{S_k\}_k$, and an error Pauli *E*, the (disordered) Hamiltonian H_E is defined

$$H_{E}(\vec{s}) := -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} \underbrace{\overbrace{J_{i}(\sigma)}^{\text{Coupling Disorder}}}_{\sigma \in \mathcal{P}_{i}} \underbrace{\overbrace{\left[\sigma, E\right]}^{\text{DoF}}}_{k:\left[\left[\sigma, S_{k}\right]\right]=-1} s_{k}$$

for $s_k = \pm 1$, and coupling strengths $J_i(\sigma) \in \mathbb{R}$.

Take-aways:

- ullet lsing-type, with interactions corresponding to single-site Paulis σ
- Disorder *E* flips some interactions (Ferro ↔ Anti-ferro)
- ullet Local code \implies local stat mech model

Independent case: Gauge symmetry

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phas transition

Correlated cas

Tensor networ decoding

Codes studied

Results

Conclusion

$$H_{E}(\vec{s}) = -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} J_{i}(\sigma) \llbracket \sigma, E \rrbracket \prod_{k : \llbracket \sigma, S_{k} \rrbracket = -1} s_{k}$$

Jsing $\llbracket A, B
rbracket \llbracket A, C
rbracket = \llbracket A, BC
rbracket$, we see this system has a gauge symmetry

 $s_k \rightarrow -s_k$ and $E \rightarrow ES_k$.

This gauge symmetry will capture the logical equivalence of errors, $Z_E = Z_{ES_k}$.

Independent case: Gauge symmetry

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studi

Results

Conclusion

$$H_{E}(\vec{s}) = -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} J_{i}(\sigma) \llbracket \sigma, E \rrbracket \prod_{k : \llbracket \sigma, S_{k} \rrbracket = -1} s_{k}$$

Using $[\![A, B]\!]$ $[\![A, C]\!] = [\![A, BC]\!]$, we see this system has a gauge symmetry

 $s_k \rightarrow -s_k$ and $E \rightarrow ES_k$.

This gauge symmetry will capture the logical equivalence of errors, $Z_E = Z_{ES_k}$.

Independent case: Nishimori conditon

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Suppose we have an independent error model

$$\Pr(E) = \prod_i p_i(E_i),$$

we now want $Z_E = \Pr(\overline{E})$, \overline{E} is the error class

 $\overline{E}:=\{ES|S\in \mathcal{S}\}$.

Using the gauge symmetry we have that the partition function can be written as a sum stabiliser-equivalent errors

$$Z_E = \sum_{\vec{s}} e^{-\beta H_E(\vec{s})} = \sum_{S} e^{-\beta H_{ES}(\vec{1})} = \sum_{F \in \overline{E}} e^{-\beta H_F(\vec{1})}$$

If we select the coupling strength such that $e^{-\beta H_E(\bar{1})} = \Pr(E)$, then $Z_E = \Pr(\overline{E})$ will follow.

Independent case: Nishimori conditon

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes stud

Results

Conclusion

Suppose we have an independent error model

$$\Pr(E) = \prod_i p_i(E_i),$$

we now want $Z_E = \Pr(\overline{E})$, \overline{E} is the error class

 $\overline{E}:=\{ES|S\in \mathcal{S}\}.$

Using the gauge symmetry we have that the partition function can be written as a sum stabiliser-equivalent errors

$$Z_E = \sum_{\vec{s}} e^{-\beta H_E(\vec{s})} = \sum_{S} e^{-\beta H_{ES}(\vec{1})} = \sum_{F \in \overline{E}} e^{-\beta H_F(\vec{1})}$$

If we select the coupling strength such that $e^{-\beta H_E(1)} = \Pr(E)$, then $Z_E = \Pr(\overline{E})$ will follow.

Independent case: Nishimori conditon

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes stud

Results

Conclusion

Suppose we have an independent error model

$$\Pr(E) = \prod_i p_i(E_i),$$

we now want $Z_E = \Pr(\overline{E})$, \overline{E} is the error class

 $\overline{E}:=\{ES|S\in \mathcal{S}\}.$

Using the gauge symmetry we have that the partition function can be written as a sum stabiliser-equivalent errors

$$Z_E = \sum_{\vec{s}} e^{-\beta H_E(\vec{s})} = \sum_{S} e^{-\beta H_{ES}(\vec{1})} = \sum_{F \in \overline{E}} e^{-\beta H_F(\vec{1})}.$$

If we select the coupling strength such that $e^{-\beta H_E(\vec{1})} = \Pr(E)$, then $Z_E = \Pr(\overline{E})$ will follow.

Independent case: Nishimori condition

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor netwo decoding

~ · · ·

We now want to pick our couplings such that $e^{-\beta H_E(\vec{1})} = \Pr(E)$. Expanding this out, we get

$$\sum_{i} \log p_i(E) = -\sum_{i} \sum_{\sigma} \beta J_i(\sigma) \llbracket \sigma, E \rrbracket.$$

Jsing the Fourier-like orthogonality relation $rac{1}{4}\sum_\sigma \llbracket \sigma, au
rbracket = \delta_{ au, I}$, this becomes

Nishimori condition: $\beta J_i(\sigma) = \frac{1}{4} \sum_{\tau \in \mathcal{P}} \log p_i(\tau) \llbracket \sigma, \tau \rrbracket,$

which implies $e^{-eta H_{E}(ec{\mathbf{I}})} = \Pr(E)$, and therefore $Z_{E} = \Pr(\overline{E})$.

This intrinsically links the error correcting behavior of the code to the thermodynamic behavior of the model (along the Nishimori line).

Independent case: Nishimori condition

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes stu

Results

Conclusion

We now want to pick our couplings such that $e^{-\beta H_E(\vec{1})} = \Pr(E)$. Expanding this out, we get

$$\sum_{i} \log p_i(E) = -\sum_{i} \sum_{\sigma} \beta J_i(\sigma) \llbracket \sigma, E \rrbracket.$$

Using the Fourier-like orthogonality relation $\frac{1}{4}\sum_{\sigma} \llbracket \sigma, \tau \rrbracket = \delta_{\tau, I}$, this becomes

Nishimori condition: $\beta J_i(\sigma) = \frac{1}{4} \sum_{\tau \in \mathcal{P}} \log p_i(\tau) \llbracket \sigma, \tau \rrbracket,$

which implies $e^{-\beta H_E(\vec{1})} = \Pr(E)$, and therefore $Z_E = \Pr(\overline{E})$.

This intrinsically links the error correcting behavior of the code to the thermodynamic behavior of the model (along the Nishimori line).

Independent case: Nishimori condition

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated case

Tensor networ decoding

Results

Conclusio

We now want to pick our couplings such that $e^{-\beta H_E(\vec{1})} = \Pr(E)$. Expanding this out, we get

$$\sum_{i} \log p_i(E) = -\sum_{i} \sum_{\sigma} \beta J_i(\sigma) \llbracket \sigma, E \rrbracket.$$

Using the Fourier-like orthogonality relation $\frac{1}{4}\sum_{\sigma} \llbracket \sigma, \tau \rrbracket = \delta_{\tau, I}$, this becomes

Nishimori condition: $\beta J_i(\sigma) = \frac{1}{4} \sum_{\tau \in \mathcal{P}} \log p_i(\tau) \llbracket \sigma, \tau \rrbracket$,

which implies $e^{-\beta H_E(\vec{1})} = \Pr(E)$, and therefore $Z_E = \Pr(\overline{E})$.

This intrinsically links the error correcting behavior of the code to the thermodynamic behavior of the model (along the Nishimori line).

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

ep 1: Degrees of freedom

 $s_v = \pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 & E_{vv'} = I, \\ -1 & E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated ca

Tensor networ decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

ep 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 & E_{vv'} = I, \\ -1 & E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

ep 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

ep 1: Degrees of freedom

 $s_v=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor networl decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 & E_{vv'} = I, \\ -1 & E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \; s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 & E_{vv'} = I, \\ -1 & E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \; s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 & E_{vv'} = I, \\ -1 & E_{vv'} = X. \end{cases} \end{split}$$

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J \, s_v s_{v'}$$

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

Toric code and the random-bond Ising model

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studie

Results

Conclusion

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

 $s_{
m v}=\pm 1$ on each vertex v

Step 2: Interactions

$$H_I = -\sum_{v \sim v'} J s_v s_{v'}$$

Step 3: Disorder

$$\begin{split} H_E &= -\sum_{v \sim v'} J e_{vv'} \, s_v s_{v'} \\ \text{where } e_{vv'} &= \begin{cases} +1 \quad E_{vv'} = I, \\ -1 \quad E_{vv'} = X. \end{cases} \end{split}$$

 $\pm J$ Random-bond Ising Model

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes studi

Results

Conclusion

Toric code

$\mathsf{Bit-flip} \to \mathsf{Random-bond}\ \mathsf{lsing}^1$

Indep. $X\&Z \rightarrow 2 \times \text{Random-bond Ising}$ Depolarising \rightarrow Random 8-vertex model²

Colour code

Bit-flip \rightarrow Random 3-spin Ising Indep. $X\&Z \rightarrow 2\times$ Random 3-spin Ising Depolarising \rightarrow Random interacting 8-vertex²

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes stud

Results

Conclusion

Toric code

Bit-flip \rightarrow Random-bond Ising¹ Indep. $X\&Z \rightarrow 2 \times$ Random-bond Ising Depolarising \rightarrow Random 8-vertex model²

Colour code

Bit-flip \rightarrow Random 3-spin Ising Indep. $X\&Z \rightarrow 2\times$ Random 3-spin Ising Depolarising \rightarrow Random interacting 8-vertex²

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes stud

Results

Conclusion

Toric code

Bit-flip \rightarrow Random-bond Ising¹ Indep. $X\&Z \rightarrow 2 \times$ Random-bond Ising Depolarising \rightarrow Random 8-vertex model²

Colour code

Bit-flip \rightarrow Random 3-spin Ising Indep. $X\&Z \rightarrow 2 \times$ Random 3-spin Ising Depolarising \rightarrow Random interacting 8-vertex²

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated cas

Tensor networ decoding

Codes stud

Results

Conclusion

Toric code

 $\begin{array}{l} {\sf Bit-flip} \to {\sf Random-bond} \ {\sf Ising}^1 \\ {\sf Indep.} \ X\&Z \to 2\times {\sf Random-bond} \ {\sf Ising} \\ {\sf Depolarising} \to {\sf Random} \ {\sf 8-vertex} \ {\sf model}^2 \end{array}$

Colour code

Error correction threshold as a quenched phase transition

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes studie

Results

Conclusion

Consider the free energy cost of a logical error L,

$$\Delta_E(L) = -rac{1}{eta} \log Z_{EL} + rac{1}{eta} \log Z_E.$$

Along the Nishimori line

$$\Delta_E(L) = \frac{1}{\beta} \log \frac{\Pr(\overline{E})}{\Pr(\overline{EL})},$$

which implies

ow threshold : $\Delta_E(L) o \infty$ (in me ove threshold : $\Delta_E(L) o 0$ (in pro-

Error correction threshold as a quenched phase transition

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes studi

Results

Conclusion

Consider the free energy cost of a logical error L,

$$\Delta_E(L) = -rac{1}{eta} \log Z_{EL} + rac{1}{eta} \log Z_E.$$

Along the Nishimori line

$$\Delta_E(L) = rac{1}{eta} \log rac{\Pr(\overline{E})}{\Pr(\overline{EL})},$$

which implies

Phase diagram sketch

Noise parameter

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phas transition

Correlated case

Tensor network decoding Codes studied Results

Conclusion

The key point independence gave us was the ability to factor our noise model

$$\Pr(E) = \prod_i p_i(E_i).$$

We can generalise this to correlated models:

Factored distribution

An error model factors over regions $\{R_j\}_j$ if there exist $\phi_j:\mathcal{P}_{R_j} o\mathbb{R}$ such that

$$\Pr(E) = \prod_{j} \phi_j(E_{R_j})$$

This model includes many probabilistic graphical models, such as Bayesian Networks and Markov/Gibbs Random Fields.

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phas transition

Correlated case

Tensor network decoding Codes studied Results

Conclusion

The key point independence gave us was the ability to factor our noise model

$$\Pr(E) = \prod_i p_i(E_i).$$

We can generalise this to correlated models:

Factored distribution

An error model factors over regions $\{R_j\}_j$ if there exist $\phi_j : \mathcal{P}_{R_j} \to \mathbb{R}$ such that

$$\mathsf{Pr}(E) = \prod_{j} \phi_{j}(E_{R_{j}})$$

This model includes many probabilistic graphical models, such as Bayesian Networks and Markov/Gibbs Random Fields.

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phas transition

Correlated case

Tensor networdecoding

Codes studie

Results

Conclusion

By construction, we can extend to the correlated case by changing $\sigma \in \mathcal{P}_i$ to $\sigma \in \mathcal{P}_{R_i}$:

 $H_{\mathsf{E}}(\vec{s}) := -\sum_{j} \sum_{\sigma \in \mathcal{P}_{\mathsf{R}_{j}}} J_{j}(\sigma) \llbracket \sigma, \mathsf{E} \rrbracket \prod_{k : \llbracket \sigma, \mathsf{S}_{k} \rrbracket = -1} \mathsf{s}_{k}$

 $eta J_j(\sigma) = rac{1}{|\mathcal{P}_{\mathcal{R}_j}|} \sum_{ au \in \mathcal{P}_{\mathcal{R}_i}} \log \phi_j(au) \left[\!\!\left[\sigma, au
ight]\!
ight],$

As before we get that $Z_E = \Pr(\overline{E})$, and so the threshold manifests as a phase transition.

Nishimori condition:

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phas transition

Correlated case

Tensor netwo decoding

Codes studi

Results

Conclusion

By construction, we can extend to the correlated case by changing $\sigma \in \mathcal{P}_i$ to $\sigma \in \mathcal{P}_{R_i}$:

$$H_{E}(\vec{s}) := -\sum_{j} \sum_{\sigma \in \mathcal{P}_{R_{j}}} J_{j}(\sigma) \llbracket \sigma, E \rrbracket \prod_{k : \llbracket \sigma, S_{k} \rrbracket = -1} s_{k}$$

Nishimori condition: $eta J_j(\sigma) = rac{1}{|\mathcal{P}_{R_j}|} \sum_{ au \in \mathcal{P}_{R_j}} \log \phi_j(au) \llbracket \sigma, au
rbracket,$

As before we get that $Z_E = \Pr(\overline{E})$, and so the threshold manifests as a phase transition.

'Across plaquette' correlated bit-flips

Model specified by

 $\begin{array}{ll} \Pr(I_e|I_{e'}) & \Pr(I_e|X_{e'}) \\ \Pr(X_e|I_{e'}) & \Pr(X_e|X_{e'}) \end{array}$

for all neighbouring edges e and e'.

Convenient parameterisation:

$$p := \Pr(X_e), \quad \eta := \frac{\Pr(X_e|X_{e'})}{\Pr(X_e|I_{e'})}.$$

'Across plaquette' correlated bit-flips

Model specified by

 $\begin{array}{ll} \Pr(I_e|I_{e'}) & \Pr(I_e|X_{e'}) \\ \Pr(X_e|I_{e'}) & \Pr(X_e|X_{e'}) \end{array}$

for all neighbouring edges e and e'.

Convenient parameterisation:

$$p := \Pr(X_e), \quad \eta := rac{\Pr(X_e|X_{e'})}{\Pr(X_e|I_{e'})}.$$

Monte Carlo simulations

SMM+TND

Correlated case

Tensor netwo decoding

Results

Conclusion

Decoding

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phas transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

Can the stat mech model give us a decoder?

If an error E occurs, a decoder needs to select one of the degenerate logical error classes

$$\overline{E}$$
 $\overline{EL_1}$ $\overline{EL_2}$ $\overline{EL_3}$...

The optimal (maximum likelihood) decoder selects the most likely class

$$D_{ML} = \overline{EL_l}$$
 where $l = \arg \max_l \Pr(\overline{EL_l})$.

Decoding

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

Can the stat mech model give us a decoder?

If an error ${\it E}$ occurs, a decoder needs to select one of the degenerate logical error classes

$$\overline{E}$$
 $\overline{EL_1}$ $\overline{EL_2}$ $\overline{EL_3}$...

The optimal (maximum likelihood) decoder selects the most likely class

 $D_{ML} = \overline{EL_l}$ where $l = \arg \max_l \Pr(\overline{EL_l})$.

Decoding

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studi

Results

Conclusion

Can the stat mech model give us a decoder?

If an error E occurs, a decoder needs to select one of the degenerate logical error classes

$$\overline{E}$$
 $\overline{EL_1}$ $\overline{EL_2}$ $\overline{EL_3}$...

The optimal (maximum likelihood) decoder selects the most likely class

$$D_{\mathsf{ML}} = \overline{\mathsf{EL}_l}$$
 where $l = \operatorname*{arg\,max}_l \mathsf{Pr}\left(\overline{\mathsf{EL}_l}\right)$.

Decoding from partition functions

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

Along the Nishimori line, the maximum likelihood condition corresponds to maximising the partition function

$$I = \operatorname*{arg\,max}_{I} Z_{EL_{I}}.$$

Approximating Z_{EL_1} therefore allows us to approximate the ML decoder.

- Step 1: Measure the syndrome *s*
- Step 2: Construct an arbitrary error C_s which has syndrome s
- Step 3: Approximate $Z_{C_sL_l} = Pr(\overline{C_sL_l})$ for each logical l
- Step 4: Find the *I* such that $Z_{C_sL_l}$ is maximised
- Step 5: Apply $(C_s L_l)^{-1}$

Decoding from partition functions

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studi

Results

Conclusion

Along the Nishimori line, the maximum likelihood condition corresponds to maximising the partition function

$$I = \arg\max_{I} Z_{EL_{I}}.$$

Approximating Z_{EL_i} therefore allows us to approximate the ML decoder.

- Step 1: Measure the syndrome *s*
- Step 2: Construct an arbitrary error C_s which has syndrome s
- Step 3: Approximate $Z_{C_sL_l} = \Pr(\overline{C_sL_l})$ for each logical l
- Step 4: Find the *I* such that $Z_{C_sL_l}$ is maximised
- Step 5: Apply $(C_s L_l)^{-1}$

ML decoding as a tensor network

- Partition functions, and thus error class probabilities, can be expressed as tensor networks^{2,3}.
- There is a tensor for each qubit, and for each stabiliser
- By approximating these class probabilities we can find the ML error

 ²Verstraete et. al., PRL 2006, doi:10/dfgcz8, arXiv:quant-ph/0601075
 ³Bridgeman and Chubb, JPA 2017, doi:10/cv7m, arXiv:1603.03039

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

SMM+TND

C.T. Chubb

Tensor network decoding

- We sweep along the network, using lossy compression of Matrix Product States
- To do this for general graphs we need to use a sweepline approach

Surface codes on different lattices

C.T. Chubb

Introductio

Independent case

EC as a phas transition

Correlated cas

Tensor networ decoding

Codes studied

Results

Conclusion

How does the surface code perform on different lattices/graphs?

aise or lower the connectivity

Irregular graphs

Surface codes on different lattices

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phas transition

Correlated cas

Tensor networ decoding

Codes studied

Results

Conclusio

How does the surface code perform on different lattices/graphs?

Raise or lower the connectivity

Irregular graphs

Surface codes on different lattices

SMM+TND

C.T. Chubb

Introductio

Independent case

EC as a phas transition

Correlated cas

Tensor networ decoding

Codes studied

Results

Conclusio

How does the surface code perform on different lattices/graphs?

Raise or lower the connectivity

Irregular graphs

Non-SC topological models

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studied

Results

Conclusion

We also want to capture 2D models that aren't (ostensibly) surface codes.

Colour code

Subsystem surface code

Non-SC topological models

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studied

Results

Conclusion

We also want to capture 2D models that aren't (ostensibly) surface codes.

Colour code

Subsystem surface code

Non-SC topological models

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated cas

Tensor network decoding

Codes studied

Results

Conclusion

We also want to capture 2D models that aren't (ostensibly) surface codes.

Colour code

Subsystem surface code

Thresholds

SMM+TND

CTO	hubb
Sec. 1. 1.	CITUDD

```
Introduction
```

Independent case

EC as a phas transition

Correlated cas

Tensor netwo decoding

Codes studie

Results

Conclusion

	Bit-flip		Phase-flip		Depolarising	
	Observed	Upper bound	Observed	Upper bound	Observed	Upper bound
Surface code (reg.)						
Square	10.917(5)%	10.9187%	10.917(5)%	10.9187%	18.81(3)%	18.9(3)%
Tri./Hex.	16.341(7)%	16.4015%	6.748(5)%	6.7407%	13.81(7)%	?
Kag./Rho.	9.875(5)%	?	11.910(6)%	?	18.09(4)%	?
T.H./Asa.	4.297(7)%	?	20.701(13)%	?	9.07(8)%	?
Surace code (irr.)						
Rand. Tri.	17.128(15)%	?	6.237(9)%	?	12.85(3)%	?
Rand. Quad.	12.195(12)%	?	9.715(11)%	?	18.05(3)%	?
Subsystem SC						
Square	6.705(13)%	6.7407%	6.705(13)%	6.7407%	11.23(3)%	?
Colour Code						
Hexagonal	10.910(5)%	10.9(2)%	10.910(5)%	10.9(2)%	18.68(2)%	18.9(3)%

Surface code saturating the Hashing Bound

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor network decoding

Codes studie

Results

Conclusion

We find a trade-off between the X and Z thresholds.

Thresholds saturate the hashing bound

 $h(\tau_x) + h(\tau_z) \le 1$

Pair matching studied earlier by Fujii et.al.⁴

⁴Fujii et.al., doi.org/d5sb, arXiv:1202.2743

Surface code saturating the Hashing Bound

SMM+TND

C.T. Chubb

Introduction

Independent case

EC as a phase transition

Correlated case

Tensor networ decoding

Codes studied

Results

Conclusion

We find a trade-off between the X and Z thresholds.

Thresholds saturate the hashing bound

 $h(\tau_x) + h(\tau_z) \leq 1$

Pair matching studied earlier by Fujii et.al.⁴

	Entropy		
	MWPM ¹	TN	
Regular			
Square	0.957	0.9948(3)	
Tri./Hex.	0.979	0.9989(3)	
Kag./Rho.	0.971	0.9918(3)	
T.H./Asa.	0.979	0.9915(6)	
Irregular			
Rand. Tri.	?	0.9974(7)	
Rand. Quad.	?	0.9948(7)	

⁴Fujii et.al., doi.org/d5sb, arXiv:1202.2743

Future work

SMM+TND

- C.T. Chubb
- Introduction
- Independent ca
- EC as a phas transition
- Correlated case
- Tensor networl decoding
- Codes studied
- Results
- Conclusion

- Stat mech mapping beyond Pauli codes
- Using the stat mech mapping for more than the threshold
- TN decoding of correlated noise
- TN decoding in 3D (including noisy 2D) and beyond, LDPCs, etc.

Thank you!

Stat mech mapping: arXiv:1809.10704, to appear in AIHPD Tensor network decoding: arXiv:2101.04125 Tensor contracting package: Coming soon!

- me@christopherchubb.com
 - ${}^{lacksymbol{\otimes}}$ christopherchubb.com
 - 9 @QuantumChubb