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Decoders

Passive error correction: physics alone suppress errors

Active error correction: decoder needed to remove error

Two classes of decoder:

Practical decoders: Speed over accuracy

Analytic decoders: Accuracy over speed
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Threshold

For large system sizes, performance is largely described by the threshold.
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Toric/surface code
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interpretation:

Stabilisers form closed loops

Logical operators form
non-contractible loops

Errors correspond to open paths

Syndrome bits corresponds to the
ends of paths
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Pair matching decoder

If errors are open paths, why not just close them? This leads to the pair matching
decoder.

This decoder is efficient, but its slightly suboptimal for bit-flip and phase-flip
errors, and performs badly for other errors.
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Most likely error versus maximum likelihood

Why is pair matching suboptimal? In short, degeneracy.

For quantum codes multiple errors can have the same syndrome. A decoder needs
to identify the most likely error class, not the single most likely error.

E1,E2, . . . E3,E4, . . .
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Statistical mechanical mapping

The idea here it to construct a family of statistical mechanical models, whose
thermodynamic properties reflect the error correction properties of the code.
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Toric code Eight-vertex model

This will allow us to use the analytic and numerical tools developed to study stat
mech systems to study quantum codes.
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Statistical mechanical mapping

Stabiliser code
& Pauli noise

−→ Disordered statistical
mechanical model

Threshold ←→ Phase transition

Decoding ←→ Calculating partition
functions

Allows us to reappropriate techniques for studying stat. mech. systems to study
quantum codes, e.g.

Threshold
approximation

←− Monte Carlo simulation

Optimal decoding ←− Partition function
calculation
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Stabiliser codes and Pauli noise

For qubits, the Paulis P := {I ,X ,Y ,Z} are defined

I :=

(
1 0
0 1

)
, X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
.

We will be considering stabiliser codes, which are specified by an Abelian
subgroup of the Paulis S, and whose code space C is the joint +1 eigenspace,

C =
{
|ψ〉
∣∣∣S |ψ〉 = |ψ〉 ,∀S ∈ S

}
.

Any two errors which differ by a stabiliser are logically equivalent, so the logical
classes of errors are

E := {ES |S ∈ S}
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Independent case: Hamiltonian

Let JA,BK be the scalar commutator of two Paulis, such that AB =: JA,BKBA.

For a stabiliser code generated by {Sk}k , and an error Pauli E , the (disordered)
Hamiltonian HE is defined

HE (~s) := −
∑
i

∑
σ∈Pi

Coupling︷ ︸︸ ︷
Ji (σ)

Disorder︷ ︸︸ ︷
Jσ,EK

DoF︷ ︸︸ ︷∏
k:Jσ,SkK=−1

sk

for sk = ±1, and coupling strengths Ji (σ) ∈ R.

Take-aways:

Ising-type, with interactions corresponding to single-site Paulis σ

Disorder E flips some interactions (Ferro ↔ Anti-ferro)

Local code =⇒ local stat. mech. model
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Independent case: Gauge symmetry

HE (~s) = −
∑
i

∑
σ∈Pi

Ji (σ)Jσ,EK
∏

k:Jσ,SkK=−1

sk

Using JA,BK JA,CK = JA,BCK, we see this system has a gauge symmetry

sk → −sk and E → ESk .

This gauge symmetry will capture the logical equivalence of errors, ZE = ZESk
.
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Independent case: Nishimori conditon

Suppose we have an independent error model

Pr(E ) =
∏
i

pi (Ei ),

we now want ZE = Pr(E ).

Using the gauge symmetry we have that the partition function can be written as a
sum stabiliser-equivalent errors

ZE =
∑
~s

e−βHE (~s) =
∑
S

e−βHES (~1) =
∑
F∈E

e−βHF (~1).

If we select the coupling strength such that e−βHE (~1) = Pr(E ), then ZE = Pr(E )
will follow.
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Independent case: Nishimori condition

We now want to pick our couplings such that e−βHE (~1) = Pr(E ). Expanding this
out, we get ∑

i

log pi (E ) = −
∑
i

∑
σ

βJi (σ) Jσ,EK.

Using the Fourier-like orthogonality relation 1
4

∑
σ Jσ, τK = δτ,I , this becomes

Nishimori condition: βJi (σ) =
1

4

∑
τ∈P

log pi (τ) Jσ, τK ,

which implies e−βHE (~1) = Pr(E ), and therefore ZE = Pr(E ).

This intrinsically links the error correcting behaviour of the code to the
thermodynamic behaviour of the model (along the Nishimori line).
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Toric code and the random-bond Ising model

Step 0: Code and noise model

Toric code with iid bit-flips

Step 1: Degrees of freedom

sv = ±1 on each vertex v

Step 2: Interactions

HI = −
∑
v∼v ′

J sv sv ′

Step 3: Disorder

HE = −
∑
v∼v ′

Jevv ′ sv sv ′

where evv ′ =

{
+1 Evv ′ = I ,

−1 Evv ′ = X .
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Other independent examples

Toric code

Bit-flip → Random-bond Ising1

Indep. X&Z → 2×Random-bond Ising
Depolarising → Random 8-vertex model2

X

Colour code

Bit-flip → Random 3-spin Ising
Indep. X&Z→ 2×Random 3-spin Ising

Depolarising → Random interacting 8-vertex2

X Z

Y

1Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143
2Bombin et.al., PRX 2012, doi:10/crz5, arXiv:1202.1852
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Error correction threshold as a quenched phase transition

Consider the free energy cost of a logical error L,

∆E (L) = − 1

β
logZEL +

1

β
logZE .

Along the Nishimori line

∆E (L) =
1

β
log

Pr(E )

Pr(EL)
,

which implies

Below threshold : ∆E (L)→∞ (in mean)

Above threshold : ∆E (L)→ 0 (in prob.)
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Phase diagram sketch

Noise parameter

T
em

p
er

at
u

re

Nish
im

ori
conditio

n
ML threshold

ME threshold

Ordered
EC possible

∆E (L)→∞

Disordered
EC impossible

∆E (L)→ 0
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Correlated case

The key point independence gave us was the ability to factor our noise model

Pr(E ) =
∏
i

pi (Ei ).

We can generalise this to correlated models:

Factored distribution

An error model factors over regions {Rj}j if there exist φj : PRj → R such that

Pr(E ) =
∏
j

φj
(
ERj

)
This model includes many probabilistic graphical models, such as Bayesian
Networks and Markov/Gibbs Random Fields.
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Correlated case

By construction, we can extend to the correlated case by changing σ ∈ Pi to
σ ∈ PRj :

HE (~s) := −
∑
j

∑
σ∈PRj

Jj(σ) Jσ,EK
∏

k:Jσ,SkK=−1

sk

Nishimori condition: βJj(σ) =
1

|PRj |
∑
τ∈PRj

log φj(τ) Jσ, τK ,

As before we get that ZE = Pr(E ), and so the threshold manifests as a phase
transition.
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Correlated example

Toric code with correlated bit-flips
Correlations induce longer-range interactions
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‘Across plaquette’ correlated bit-flips

e e′

This error model is entirely specified by
the conditional error probabilities

Pr(Ie |Ie′) Pr(Ie |Xe′)

Pr(Xe |Ie′) Pr(Xe |Xe′)

for all neighbouring edges e and e′.

For our purposes, it will convenient to
parameterise things by

p := Pr(Xe), η :=
Pr(Xe |Xe′)

Pr(Xe |Ie′)
.

Here p is the marginal error rate, and η
is a measure of the correlations.
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Monte Carlo simulations
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η = 2 (corr.)

Thresholds

Indep.: pth = 10.917(3)%1,2

Corr.: pth = 10.04(6)%

1Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143
2Toldin et.al., JSP 2009, doi:10/c3r2kc, arXiv:0811.2101
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Decoding from partition functions

Along the Nishimori line, the maximum likelihood condition corresponds to
maximising the partition function

` = argmax
`

ZEL`
.

Approximating ZELl
therefore allows us to approximate the ML decoder.

Step 1: Measure the syndrome s

Step 2: Construct an arbitrary error Cs which has syndrome s

Step 3: Approximate ZCsLl
= Pr(CsLl) for each logical class l

Step 4: Find the l such that ZCsLl
is maximised

Step 5: Apply (CsLl)
−1
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Decoding from (approximate) tensor network contraction

Partition functions can be expressed as tensor networks1,2, allowing us to use
approximate tensor network contraction schemes.

For 2D codes and locally correlated noise, this tensor network is also 2D. Here we
can use the MPS-MPO approximation contraction scheme considered by Bravyi,
Suchara and Vargo3:

1Verstraete et. al., PRL 2006, doi:10/dfgcz8, arXiv:quant-ph/0601075
2Bridgeman and Chubb, JPA 2017, doi:10/cv7m, arXiv:1603.03039
3Bravyi, Scuhara, Vargo, PRA 2014, doi:10/cv7n, arXiv:1405.4883
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Decoding from (approximate) tensor network contraction

This gives an algorithm for (approximate) maximum likelihood decoding for any
2D code, subject to any locally correlated noise, generalising BSV.

Indeed, applying this to iid noise in the surface code reproduces BSV:

ir jr

ib

jb

= ib jb

ir

jr

= p(Ee ·X ib+jbZ ir +jr ) i k

j

l

= i k

j

l

= δi,j,k,l
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Ongoing work: Surface codes on different graphs

The TN decoder lets us efficient probe the threshold of 2D topological codes.
What happens if we change the underlying graph?

Raise or lower the connectivity Irregular graphs
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Ongoing work: Surface codes on different graphs

We find a trade-off between the X
and Z thresholds.

Hashing bound: h(px) + h(pz) < 1.

Pair matching studied earlier by Fujii
et.al.4

We are currently running similar
numerics for depolarising noise, and
the colour code.

4Fujii et.al., doi.org/d5sb, arXiv:1202.2743
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Further work

TN decoding of LDPCs (ongoing work with Stefanos Kourtis)

Use TN decoder to design codes for correlated noise

Thank you!

Stat Mech Mapping: arXiv:1809.10704, to appear in AIHPD
Tensor Network decoding: To appear arXiv:2009:?????

R me@christopherchubb.com

® christopherchubb.com

7 @QuantumChubb
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