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Decoding algorithms based on approximate tensor network contraction have proven tremendously successful
in decoding 2D local quantum codes such as surface/toric codes and color codes, effectively achieving optimal
decoding accuracy. In this work, we introduce several techniques to generalize tensor network decoding to
higher dimensions so that it can be applied to 3D codes as well as 2D codes with noisy syndrome measurements
(phenomenological noise or circuit-level noise). The three-dimensional case is significantly more challenging than
2D, as the involved approximate tensor contraction is dramatically less well-behaved than its 2D counterpart.
Nonetheless, we numerically demonstrate that the decoding accuracy of our approach outperforms state-of-the-
art decoders on the 3D surface code, both in the point and loop sectors, as well as for depolarizing noise.
Our techniques could prove useful in near-term experimental demonstrations of quantum error correction, when
decoding is to be performed offline and accuracy is of utmost importance. To this end, we show how tensor
network decoding can be applied to circuit-level noise and demonstrate that it outperforms the matching decoder
on the rotated surface code. Our code is available at https://github.com/ChriPiv/tndecoder3d.

1 Introduction

The practical realization of quantum technologies is impeded by the inherent sensitivity of quantum systems to
noise. Quantum error correction [1, 2] is generally considered the solution to this problem, as it allows for fault-
tolerant processing and transmission of quantum information. The idea is to embed the quantum information into a
larger system using a quantum code to increase its resilience against noise. The stabilizer formalism [3] has proven
to be a convenient and useful framework to construct and describe quantum codes. The error correction procedure
for a stabilizer code involves the measurement of certain stabilizer operators, and the measurement outcomes (the
syndrome) are subsequently processed by a classical decoding algorithm (or decoder) to select a correction operation
to be applied on the system.

Tensor network (TN) decoders operate by approximately contracting one or more relevant tensor networks
and subsequently deciding on the correction operation from the contraction results. The relevant tensor networks
describe the probability of a given logical error conditioned on the observed syndrome. If the tensor networks were
contracted exactly, the resulting decoder would be optimal, so the only heuristic lies in the approximate contraction.
Generally, the layout of the networks follows the locality of the code from which they were derived, and in the case
of correlated noise from the locality of those correlations [4]. Previous work has focused mainly on 2D local codes,
i.e. codes whose stabilizer operators are local when the qubits are laid out in a two-dimensional array. This family
of codes includes topological codes, such as the 2D toric/surface code [5] and the 2D color code [6]. TN decoding
performs remarkably well on all of these codes and has been shown to achieve essentially optimal decoding accuracy
at competitive runtimes for bit-flip, phase-flip, and depolarizing noise [4, 7, 8]. Another approach is to base the
tensor network on the encoding circuit of the code [9]; this has recently been shown to perform well on codes with
local circuits of low depth [10].

However, while approximate contraction of 2D TNs is well understood and in most cases numerically well-
behaved, approximate contraction of 3D networks is not and remains an active field of research. The fundamental
obstruction is that it is not possible to define a canonical gauge of a tensor network that is not a tree [11, §5.2], so
for example optimally truncating a projected entangled pair state (PEPS) network is more difficult than a matrix
product state (MPS). This restriction is especially unfortunate for practical applications, since in experimental
platforms the syndrome measurements are noisy and must be repeated multiple times (typically on the order of the
distance of the code). The resulting decoding problem for a 2D local code under circuit level noise is fundamentally
three-dimensional, and thus involves three-dimensional TNs. For this reason, existing TN decoding schemes are not
applicable.

Here we introduce a family of techniques which extend the framework of TN decoding beyond two dimensions.
The resulting decoding accuracy can in principle be made arbitrarily close to optimal, and thus we focus on
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accuracy and eschew the issue of runtime. This approach lends itself to experimental demonstrations of error-
corrected quantum memories on near-term hardware, when the decoding process is performed offline and runtime
is not an immediate issue. Near-optimal decoders are also useful in probing the fundamental performance of codes
independent of any decoder heuristics. They can thus be useful in the design of quantum codes [12].

We describe our main contributions in more detail below, by way of sketching the structure of the remainder of
the paper. The following Section 2 reviews the properties of stabilizer codes, their optimal decoding as finding the
most probable logical coset consistent with the syndrome, and the formalism of detector error models. It also gives
a short overview of tensor networks.

In Section 3 we introduce two distinct representations (applicable to any stabilizer code) of the logical coset
probabilities as TN contractions. The generator picture mathematically corresponds to the statistical mechanical
mapping used in [4, 7, 8], but without the associated statistical mechanical language. The detector picture can be
regarded as a dual representation to the generator picture. To our knowledge it has not been previously proposed in
literature in this context. The idea of the detector picture is to choose the tensor network to represent a sum over
all possible error patterns, and then remove the patterns that are not compatible with an observed syndrome and
a given logical operator. In contrast, the generator picture takes the opposite approach, first fixing a representative
Pauli error r that is compatible with the observed syndrome and logical operator, and then summing over the
probabilities of errors r · s over all stabilizers s to obtain the total probability of the corresponding logical coset.

In Section 4 we propose a technique for approximate contraction of both detector and generator TNs: Sweep a
two-dimensional TN from one side of the 3D TN to the other, contracting the tensors that are encountered along
the way layer-by-layer, all while continuously truncating the bond dimensions of the 2D network to keep it below
a given threshold. This can be seen as a higher-dimensional generalization of the sweep-line algorithm used in [8].
Unlike the case of sweeping with an MPS, one cannot define a canonical form for a 2D tensor network that includes
loops, making it difficult to realize a numerically well-behaved truncation scheme. We make use of the simple
update technique [13–15], commonly used in the condensed matter community to simulate the time evolution of
spin chains. The idea is to keep track of a rank-one approximation of the environment of each tensor in the loopy
tensor network, which allows for a more accurate truncation. This method was recently shown to be sufficient for
fast and highly accurate simulations of 2D quantum systems with more than a thousand qubits [16]. Its theoretical
justification lies in the fact that it makes the loopy network approach the Vidal gauge when the applied gates are
close enough to the identity [17].

In Section 5 we present the results of numerical simulations of TN decoding. First, we consider independent
bit- and phase-flip noise on the unrotated 3D surface code, differentiating the stabilizers into the point sector of
weight-six X-type stabilizers and the loop sector of weight-four Z-type stabilizers. Note that decoding the point
sector can equivalently be regarded as decoding the 2D surface code with a phenomenological noise model [18].
These two sectors are decoded with detector and generator TNs, respectively. As shown in Figures 1a and 1b, TN
decoding outperforms the state of the art in both sectors, namely minimum-weight perfect matching for the point
sector [19] and BP+OSD for the loop sector [20]. In a second step, we consider depolarizing noise on the unrotated
3D surface code, which involves both the point and loop sector in a correlated manner. We find that the detector
TN decoder performs considerably better than the generator TN. As depicted in Figure 1c, it also significantly
improves over the existing state-of-the-art decoder, which is BP+OSD [21].

We also develop a technique for TN decoding of circuit-level noise. One could make use of the circuit itself to
construct the TN, but while the resulting TNs are three-dimensional, they are very large even for modest-sized
decoding tasks. Instead, we make use of Stim’s detector error models [22] to construct the TN, and consider
the rotated surface code as a proof-of-principle. Even with this approach, the resulting 3D tensor network is
notoriously large and exhibits a very complicated topology, as seen in Figures 8 and 10. To solve this problem,
we first “compress” the TN to a cubic form via local approximate contraction. The result can then be globally
contracted with the simple update method described above. Numerical results for the rotated surface code are
depicted in Figure 1d and compared to PyMatching [23, 24].

Table 1 summarizes our observed thresholds and compares them with decoders in previous literature. The
thresholds are estimated using the bootstrapping procedure explained in [8], see [25] for more details. We note
that these thresholds should be taken with a grain of salt, since the considered code distances are rather small and
therefore finite-size effects might have a significant effect. We argue that the improvements in logical error rates are
more significant here, especially for the circuit-level noise where the exact threshold might be of small importance
for experiments.

Finally, we discuss the ample directions for further research in Section 6. Our software implementation of the
tensor network decoder is available at https://github.com/ChriPiv/tndecoder3d.
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Figure 1: Threshold plots for (a) point sector, (b) loop sector, (c) depolarizing noise for the 3D unrotated surface
code. For all three cases, we compare the tensor network decoder with the current state of the art. (d) depicts how
the tensor network decoder compares to the matching decoder for circuit-level noise on the rotated surface code.
The thresholds are depicted in Table 1.

TN decoder (ours) Other decoders Optimal threshold

Point sector 3.136+0.012
−0.014%

Matching [19] 2.93± .02% ≈ 3.3% [26]
RG [27] 1.9± 0.4%

Loop sector 22.788+0.123
−0.107%

Erasure mapping [28] ≈ 12.2%

23.180± 0.004%

[29, 30]

Toom’s rule [31] ≈ 14.5%

Sweep [32] ≈ 15.5%

RG [33] ≈ 17.2%

Neural network [34] ≈ 17.5%

BP+OSD [20] 21.55± 0.01%

Depolarising 7.067+0.034
−0.033%

BP+OSD [21] 5.95± 0.03%
unknown

BP+OSD (ours)1 6.715± 0.012%

Circuit-level

depolarising
≈ 0.8% Matching (ours) ≈ 0.78% unknown

Table 1: Comparison of thresholds between TN decoders and prior art. In some cases, the optimal threshold can
be estimated using a statistical mechanical mapping. Loop sector references adapted from [20].

1There might be some technical differences between the two BP+OSD implementations. Furthermore we do not consider periodic
boundary conditions and the small distances might lead to finite size effects playing a significant role.
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2 Preliminaries

2.1 The Pauli Group and its Symplectic Structure

The n-qubit Pauli group Pn is defined as the set of n-fold tensor products of single-qubit Pauli operators with an
additional phase ±1 or ±i:

Pn :=
{
ic ·Q(1) ⊗ · · · ⊗Q(n)

∣∣∣ c ∈ {0, 1, 2, 3}, Q(i) ∈ {1, σX , σY , σZ}
}

(1)

where σX , σY and σZ denote the three Pauli matrices. For Q ∈ Pn we denote its i-th component by Q(i) ∈
{1, σX , σY , σZ}. Any Pauli operator can be represented (up to phase) by a pair of length-n binary bitstrings
u, v ∈ Fn

2 defined as follows:

ui :=

{
1 if Q(i) ∈ {σX , σY }
0 else

vi :=

{
1 if Q(i) ∈ {σZ , σY }
0 else

(2)

The map w : Pn → F2n
2 taking Q to (u, v) is a group homomorphism in that w(Q′Q) = w(Q′) + w(Q).

The fact that any two Pauli operators either commute or anticommute allows us to define a symplectic form on
Pn, namely ⟨·, ·⟩ : Pn × Pn → F2 with

⟨Q,Q′⟩ :=

{
0 if [Q,Q′] = 0,

1 if {Q,Q′} = 0.
(3)

Observe that ⟨Q,Q′⟩ = w(Q)TJw(Q′) for J =
(
0 1
1 0

)
, when interpreting w(Q) as a column vector, with 1 the

n-dimensional identity matrix.
A symplectic basis for Pn is a set of 2n Pauli operators X1, . . . , Xn, Z1, . . . , Zn ∈ Pn which fulfills the (anti-

)commutation relations

⟨Xi, Xj⟩ = 0 , ⟨Zi, Zj⟩ = 0 , and ⟨Xi, Zj⟩ = δij . (4)

for all i, j ∈ {1, . . . , n}. Given a symplectic basis, any Pauli operator Q ∈ Pn can be written as a product of the
basis elements

Q = ic ·Xλ1
1 · · ·Xλn

n · Zµ1

1 · · ·Zµn
n (5)

for some set of coefficients c ∈ {0, 1, 2, 3}, λ, µ ∈ F2n
2 .

In many instances, the phase of a Pauli operator is irrelevant and to reflect this we define the projective Pauli
group as

P∗
n := Pn/{1,−1, i1,−i1} (6)

which represents the Pauli operators modulo phase. We denote the projection from Pn → P∗
n by π. For convenience,

we will generally denote elements of Pn with upper-case letters and elements of P∗
n with lower-case letters. Any

element q ∈ P∗
n can be written as q = π(Q) for some Q ∈ Pn, so by Equation (5) one can write

q = xλ1
1 · · ·xλn

n · zµ1

1 · · · zµn
n (7)

where xi := π(Xi) and zi := π(Zi). For a given symplectic basis, there is a one-to-one relation between the 4n

elements of P∗
n and the 4n possible coefficients (λ, µ) ∈ F2n

2 .

2.2 Stabilizer Codes

Here we sketch the relevant aspects of stabilizer codes; for more details see [35]. An n-qubit stabilizer code is
characterized by its stabilizer group S, an Abelian subgroup of Pn. The codespace is defined as the simultaneous
+1 eigenspace of all S ∈ S. For a stabilizer group generated by n − k independent Pauli operators S1, . . . , Sn−k,
the dimension of the codespace is 2k, meaning it encodes k qubits.

When considering the action of a Pauli on a codeword, the phase of the operator is clearly physically irrelevant,
so we will consider such a Pauli e to be ∈ P∗

n. By the definition of the stabilizer group, any e ∈ S∗, where S∗ := π(S),
will act trivially on any codeword. The information stored in the codespace is acted on by the logical operators of
the code, the subgroup L∗ := N(S∗)/S∗ ⊂ P∗

n defined as the normalizer of the stabilizer group in the Pauli group,
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modulo the stabilizers themselves. Indeed, L∗ consists of all Pauli operators not in S∗ which commute with all its
elements.

Another important related group are the destabilizers D∗ := N(L∗)/S∗ ⊂ P∗
n, those Pauli operators which

commute with the logicals but which are not in the stabilizer group S∗ [36]. Using a symplectic Gram-Schmidt
procedure, any set of independent stabilizer generators can be extended to a symplectic basis in which z1, . . . , zk
and x1, . . . , xk generate L∗, zk+1, . . . , zn generate S∗, and xk+1, . . . , xn generate D∗ [37]. This symplectic basis
extension of the stabilizer generators is sometimes called a tableau of the code. It should be noted that a tableau
of a stabilizer code is not unique.

As a consequence, given some tableau of a stabilizer code, any Pauli operator q ∈ P∗
n can be uniquely decomposed

in a stabilizer, destabilizer and logical part, i.e. q = s · d · l where s ∈ S∗, d ∈ D∗, and l ∈ L∗. More concretely, we
can write q = xλ1

1 · · · · · xλn
n · zµ1

1 · . . . zµn
n where λi = ⟨q, zi⟩ and µi = ⟨q, xi⟩.

The general error correction procedure for a stabilizer code can be described as follows. First, the stabilizer
generators S1, . . . , Sn−k are measured, each one yielding a result mj ∈ F2. Because the stabilizers commute, the
order of the measurement does not matter. The entire collection of outcomes, m ∈ Fn−k

2 is called the syndrome.
The next step of the correction procedure is to decide on a suitable Pauli correction operation given the observed
syndrome. This requires only classical computation, which we will call the decoder. Finally, the selected Pauli
correction operation is applied to the data qubits.

2.3 Optimal Pauli Noise Decoding

The correction procedure succeeds if the product of the actual error e ∈ P∗
n and the correction operation e′ ∈ P∗

n

is a stabilizer: e′e ∈ S∗. The fact that successful correction need not determine the actual error is due to the
degeneracy of quantum stabilizer codes.

Decomposing e = s · d · l and e′ = s′ · d′ · l′, it is apparent that the stabilizer contribution is irrelevant. That
is, e′′ = se′ is just as good a correction operation as e′ for any s ∈ S∗. Meanwhile, the syndrome m specifies the
destabilizer contribution as d = xm1

k+1 · · · · · x
mn−k
n since the s and l contributions commute with S∗. Therefore to

return to the codespace (with trivial syndrome), it is necessary that d′ = d.
The remaining task of the decoder is to select an appropriate l′ given the syndrome m. Suppose that the Pauli

errors occur according to some distribution PE over P∗
n, so that the probability of an error e is PE(e). In view of

the decomposition into stabilizer, destabilizer, and logical operator contributions, the distribution over errors may
be thought of as a distribution over the random variables S, D, and L: PS,D,L(s, d, l) := PE(s · d · l). The optimal
decoding strategy then consists of selecting l′ to be the most likely logical operator given the observed syndrome
m. This may be written as

l′ = argmax
l∈L∗

PL|D=d(m)(l) , (8)

where we have written the destabilizer d as a function of m since the latter determines the former. By Bayes’ rule
we have PL|D=d(m)(l) = PL,D(l, d(m))/PD(d(m)), and therefore

l′ = argmax
l∈L∗

∑
s∈S∗

PS,D,L(s, d(m), l) = argmax
l∈L∗

∑
s∈S∗

PE(s · d(m) · l) . (9)

The optimal decoder is only concerned with the most-likely error class, namely Pauli operators s · d · l′ for any
s ∈ S∗. It is not concerned with the most-likely error, given by s′ · d · l′ for (s′, l′) = argmaxs∈S∗,l∈L∗ PE(s ·m · l).

2.4 Circuit-level Noise

When realizing error correction experiments in practice, one encounters the additional difficulty that the syndrome
measurement itself is also affected by noise. This significantly complicates the decoding process on one hand
because the syndrome measurement outcome cannot be trusted (and thus the destabilizer part of the error cannot
be determined with certainty) and on the other hand because the syndrome readout circuit itself might generate
and spread noise throughout the data qubits. The most common solution to address this issue for 2D topological
codes is to repeat the syndrome measurement multiple times, which essentially increases the dimensionality of the
decoding problem from 2D to 3D [18].

While the stabilizer formalism provides a means to describe the relationship between error events in the circuit
and observed measurement outcomes, it can be computationally advantageous to make use of the slightly different
formalism of detector error models (DEMs)[22]. In a DEM, noise in the circuit is modelled as a collection of error
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mechanisms, where each “mechanism” is a a single Pauli operator occurring somewhere in the circuit. Further-
more, these errors are modelled as occurring independently of each other. For example, depolarizing noise can be
represented in the framework of DEMs, as it can be seen as the concatenation of independent X, Y and Z error
mechanisms, each occurring with identical probability:

Dp = ((1− rq) · [1] + rq · [σX ]) ◦ ((1− rq) · [1] + rq · [σY ]) ◦ ((1− rq) · [1] + rq · [σZ ]]) (10)

where Dp(ρ) := (1 − p)ρ + p1
2 is the depolarizing channel of rate p, rq := 1−

√
1−p
2 , and [U ](ρ) := UρU† denotes

the channel induced by the unitary U . Note that not all single-qubit Pauli channels can be represented as three
independent X, Y and Z error mechanisms. Compared to the stabilizer formalism in which individual qubit Pauli
errors are specified by an element of F2

2, e.g. X
uZv for (u, v) ∈ F2, the DEM framework uses an overcomplete

representation XuY vZw for (u, v, w) ∈ F3
2. Thus (u, v, w) and (1− u, 1− v, 1− w) specify the same Pauli error.

Every error mechanism in a DEM causes certain detectors to flip, where detectors are parity checks of mea-
surement outcomes that would be zero should no noise occurs in the circuit. Often the detectors are given by the
parity of two-subsequent measurements of the same stabilizer. Typically, detectors should be chosen in such a way
that an error mechanism only causes detectors to flip that are nearby in space and time. Similarly to detectors, an
error mechanism can also cause a logical observable to flip. Analogously to detectors, these are parity checks that
are supposed to take a deterministic value if no noise is present in the circuit. The main difference is that logical
observables are not given as input to the decoding algorithm—instead the task of the decoder is to estimate their
value.

Mathematically speaking, a DEM with n error mechanisms and m detectors is characterized by the triple
(H, p, ℓ), with H ∈ Fm×n

2 a parity check matrix, p ∈ Rn a probability vector, and ℓ ∈ Fn
2 a logical error indicator

vector. Here we have assumed a DEM with only a single logical observable, but the formalism can be extended to
multiple logical operators. The entry Hi,j ∈ F2 is 1 if and only if the error mechanism j causes the detector i to
flip and zero otherwise, while the ith component pi of p is the probability that the ith error mechanism occurs, and
the ith component ℓi of ℓ is 1 when the ith error mechanism causes the logical observable to flip and 0 otherwise.

It should be noted that multiple error mechanisms which cause the identical detectors to flip and have the same
logical effect can be combined into one single error mechanism with combined probability. This optimization is
always done in practice, as it can considerably reduce the number of error mechanisms. Indeed, this is one of the
main advantages of the DEM formulation.

The optimal decoder for a detector error model is formulated as follows: Assume that the measurement outcome
of the detectors is given by m ∈ Fm

2 . The joint probability of the detector outcome m occurring and the logical
error being L ∈ F2 is given by

pm,L =
∑
x∈Fn

2
Hx=m and

ℓ·x=L

PX [x] (11)

where
PX [x] := (1− p1)

1−x1px1
1 · · · (1− pn)

1−xnpxn
n . (12)

The optimal logical correction L∗ is then given by L∗(m) = argmax
L∈F2

pm,L due to a similar reasoning as in Section 2.3.

2.5 Tensor Networks

Here we give a brief overview; for more details see e.g. [38]. Fundamentally, tensor networks are a graphical
representation of algebraic expressions which are sums of products. This graphical representation can be useful in
designing algorithms for exact or approximate evaluation of the intended expression. Consider an expression of the
form g(x1, x2) =

∑
y1,y2,y3

f1(x1, y1, y3)f2(x2, y2, y3)f3(y1, y2). We associate a vertex or node to each factor and to
each variable external to the summation. Edges connect the appropriate nodes; there is one edge for each of the
internal and external variables. The result is the following.

f1 f2

f3

x1 x2

y1 y2

y3

(13)

Our convention is edges terminating on a variable name fix the value of that edge, so the tensor network represents
g(x1, x2) for given values of x1 and x2. On the other hand, a variable name next to an edge is just a label. In this

6



way we can use the tensor network to represent the entire function g by using half-edges for free variables:

f1 f2

f3

x1

y1 y2

x2

y3

(14)

The example g is not the general case of a sum-of-products, as no variable appears in more than two factors.
However, any general sum of products can be brought into this particular form by making use of additional internal
variables and indicator functions to enforce equality. For instance, consider

g′(x1, x2) =
∑

y1,y2,y3

f1(x1, y1, y3)f2(x2, y2, y3)f3(y1, y2, y3), (15)

where y3 now appears in each factor. But this is just

g′(x1, x2) =
∑

y1,y2,y3,z1,z2

f1(x1, y1, z1)f2(x2, y2, z2) f3(y1, y2, y3)δ(y3, z1, z2) (16)

for δ the function which is 1 when all its arguments are equal and zero otherwise. Now we apply the above
construction. Denoting the δ factor by =, the following tensor network represents the function g′:

f1 f2

f3

=
x1

y1 y2

x2 (17)

3 Optimal Decoding as Tensor Network Contraction

In this section we describe two formulations of the quantity
∑

s∈S∗ PE(s · d(m) · l) as tensor network contraction.
By Equation (9), this is sufficient to realize the optimal decoder; the error class probability can be calculated for
each value of l and fixed m via contraction. We call the two formulations the detector picture and the generator
picture.

Specifically, we will consider the case of independent single-qubit noise of the form

PE(q) = P1(q
(1)) · P2(q

(2)) · · ·Pn(q
(n)), (18)

where the Pi for i ∈ {1, . . . n} are distributions over {1, σX , σY , σZ}. This will ensure that the tensor network
inherits the topology of the stabilizer code, i.e. a 2D topological code results in a tensor network that is local in
2 dimensions and a 3D topological code results in a tensor network that is local in 3 dimensions. More generally,
it would be sufficient to assume that the noise model is expressible as a Markov random field [4], but we will not
pursue this issue further here.

Exact contraction of the resulting tensor networks will generally be infeasible, and therefore approximate con-
traction procedures are required in practice. These are further discussed in Section 4.

Furthermore, we also discuss how the generator and detector picture simplify for the special case of CSS codes
under purely X-type and Z-type Pauli noise. Finally, we also briefly discuss how to extend the formalism to
circuit-level noise, which is more relevant for experimental implementations of quantum error correction.

Both tensor network formulations begin with the expression∑
s∈S∗

PE(s · d(m) · l) =
∑
q∈P∗

n

PE(q)Πm,l(q) (19)

where Πm,l(q) is an indicator function enforcing that q should have syndrome m and logical component l. This is
the basic sum-of-products expression that leads to a tensor network representation. It will be more convenient to
represent each Pauli operator as an element of F2n

2 using the map w instead of working over P∗
n. Abusing notation

somewhat to write PE(y) with y ∈ F2n
2 for PE(q) with y = w(q) and similarly for Πm,l, we have∑

s∈S∗

PE(s · d(m) · l) =
∑

y∈F2n
2

PE(y)Πm,l(y) . (20)

Two different ways of expressing the indicator function give rise to the two tensor network formulations. Both make
use of the parity function P, which is zero unless the sum (modulo 2) of its arguments is itself zero.
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Figure 2: Detector picture tensor network of the 5-qubit code. In order to improve readability, the lines in the
network are coloured red and blue to indicate connections to the X and Z tensors.

3.1 Detector Picture

3.1.1 Initial formulation

In the detector picture we start by using the parity function to enforce the particular syndrome and logical contribu-
tion. Working directly in the F2n

2 representation, the syndrome constraint is simply y·w̄(si) = mi for i = 1, . . . , n−k,
where we have defined w̄(q) = Jw(q) for any Pauli operator q and s1, . . . , sn−k denote the stabilizer generators.

These constraints are captured by the indicator function
∏n−k

i=1 P(y · w̄(si),mi). The constraint for the logical oper-

ator is similar. Writing l in terms of the generators xj and zj as l = xa1
1 · xa2

2 · · ·xan
n · zb11 · zb22 · · · zbnn with a, b ∈ Fk

2 ,

we then have
∏k

j=1 P(y · w̄(xj), bj)P(y · w̄(zj), aj). Note that commutation or anticommutation with xj determines
the zj contribution to the Pauli operator, and vice versa. Thus we have

Πm,l(q) =

n−k∏
i=1

P(y · w̄(si),mi)

k∏
j=1

P(y · w̄(xj), bj)P(y · w̄(zj), aj) . (21)

Using this expression in Equation (20) gives a summation over product terms. For convenience we write the
summed variable y = (u, v) where u ∈ Fn

2 is the X component and v ∈ Fn
2 is the Z component of the error. Then

for each qubit the TN includes a tensor node for the probability of error on that qubit. We label the node for the
ith qubit Pi and it has two edges, corresponding to ui and vi, specifying the X and Z components of the Pauli
error on that qubit, respectively.

For the parity factors, first observe that since y · w̄(si) is just the sum of the components of y = (u, v) for which
w̄(si) is not zero, we may simply take these components as individual arguments to P. Thus, each parity function
is associated to a tensor node with edges given by the appropriate components of u and v, as well as a bit coming
from the constraints, be it mi, ai, or bi. Tensor nodes associated to parity functions are called check nodes and
labelled by ‘+’.

Since any given ui or vi may participate in multiple parity constraints, to connect the output of a probability
tensor Pj we make use of an equality tensor to copy the values of ui and vi. An equality node, labelled by ‘=’,
simply represents the function which is 1 if all of its arguments agree, and zero otherwise.

Figure 2 depicts the detector tensor network associated to the decoding problem of the 5-qubit code. The
stabilizer generators are taken to be s1 = XZZXI, s2 = IXZZX, s3 = XIXZZ, s4 = ZXIXZ and logical
generators x1 = XZIZI, z1 = IZIXX. Edges terminating in variables are understood to take only the value of
the indicated variable, i.e. an edge terminating in ‘a’ takes only the value a. The equality nodes are colored red
and blue to distinguish ui, or X contributions, in red from vi, Z contributions, in blue.

To summarize, the detector picture tensor network is obtained as follows.
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The tensor network is specified by the qubit probability distributions {Pj}nj=1, the syndrome m ∈ Fn−k
2 , the

associated stabilizer generators {si ∈ S∗}n−k
i=1 , the logical generators {xj , zj ∈ L∗}kj=1, and a logical operator

l ∈ L∗ with l = xa1
1 · xa2

2 · · ·xan
n · zb11 · zb22 · · · zbnn with a, b ∈ Fk

2 .

1. The ith qubit is represented by

= =

Pi with the red and blue equality nodes corresponding to the X and
Z components respectively.

2. The jth stabilizer generator is represented by a check node with one edge connected to the syndrome
value mj .

3. The jth logical generator xj (zj) is represented by a check node with one edge connected to bj (aj).

4. A check node is connected to an equality node (of X or Z type) if and only if the corresponding qubit
is involved in the corresponding stabilizer or logical generator. For instance, the jth stabilizer check is
connected to ui if w̄(sj)i = 1 and vi if w̄(sj)i+n = 1. (Note the use of w̄ here.)

3.1.2 Removing high-weight logical parity nodes

In the setting of topological codes, the check nodes corresponding to stabilizer generators are local and of constant
degree. However, the check nodes associated to the logical generators, i.e. the factors P(y · w̄(xj), bj) and P(y ·
w̄(zj), aj) typically have neither of these properties. Their connectivity can cause difficulties in the approximate
tensor contraction methods described in Section 4. These difficulties can however be circumvented by using the
Walsh-Hadamard transform.

Recall that the decoder will need to evaluate 22k tensor networks, one for each value of a, b ∈ Fk
2 . That is to

say, we are ultimately interested in the tensor network like that of Figure 2 but where the logical check nodes have
open edges instead of these edges terminating on fixed values a and b. The network with open edges represents the
collection of all the networks with fixed edges. Using the Hadamard tensor we can instead determine all the requisite
error class probabilities by evaluating 22k simpler tensor networks and subsequently performing a Walsh-Hadamard
transform of the resulting data.

The components of the degree-two Hadamard tensor on binary-valued edges are determined by the 2 × 2
Hadamard matrix. Observe that contracting a separate Hadamard tensor to all the edges of an equality ten-
sor results in a tensor proportional to the parity tensor. Algebraically, say for the degree-three case, this is the
statement that ∑

x′,y′,z′∈F2

Hxx′Hyy′Hzz′ δx′y′ δy′z′ ∝ P(x, y, z) . (22)

In tensor network notation this is just

∝=
H

H

H + (23)

This equivalence allows us to replace the 2k parity check nodes associated with the logical generators with
equality nodes and degree-two Hadamard nodes. For instance, if there are two logical parity check nodes, the
general situation is given by

=
H

H

H =
H

H

H (24)

where the cloud represents the remainder of the network. Instead of determining the values of the total tensor
network, one may instead evaluate network inside the dashed box. In this example, there are four such networks
to be evaluated, and in general for 2k parity nodes there will be 22k relevant networks. Regarding this contraction
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data as a vector of 22k entries, the final tensor network contraction with the “outbound” Hadamard nodes is just
the Walsh-Hadamard transform of the data.

This approach fixes the problem of the non-local nodes, as the remaining high-weight equality node in the dashed
network can be replaced with equality nodes on each involved site separately, given that the value of the external
leg is fixed.

3.2 Generator Picture

The generator picture takes a different approach to handling the dependence on the logical operator l. Returning
to Equation (20), the required terms in the sum correspond to summing over all the Pauli operators in the set
Fm,l = {s · xm1

k+1 · · ·x
mn−k
n · l : s ∈ S∗} (a coset of the stabilizer group). Equivalently, for any rm,l in Fm,l, i.e. any

Pauli operator with syndrome m and logical component l, Fm,l can equally-well be specified by {srm,l : s ∈ S∗}.
In terms of the F2n

2 representation, Fm,l is specified by {w(rm,l) +
∑n−k

i=1 λiw(si) : λ ∈ Fn−k
2 } where s1, . . . , sn−k

denote the stabilizer generators. The indicator function Πm,l(y) enforces that y is an element of this set. Therefore,
in terms of the parity function P, it holds that

Πm,l(y) =
∑

λ∈Fn−k
2

P(y, w(rm,l), λ1w(s1), . . . , λn−kw(sn−k)) . (25)

Therefore, we now have the expression∑
y∈F2n

2

PE(y)Πm,l(y) =
∑

y∈F2n
2

∑
λ∈Fn−k

2

PE(y)P(y, w(rm,l), λ1w(s1), . . . , λn−kw(sn−k)) , (26)

which is also in sum-of-products form, and hence amenable to tensor network representation. Here we are using a
slightly different parity function than in the previous section; in Equation (26) the arguments are elements of F2n

2 ,
as opposed to single bits. However, P(y, y′) for y = (u, v) and y′ = (u′, v′) both in F2n

2 can be decomposed into∏n
j=1 P(uj , u

′
j)P(vj , v′j).

The resulting algebraic expression for
∑

y∈F2n
2

PE(y)Πm,l(y) is rather unwieldy, so let us proceed directly to the

tensor network description. In contrast to the detector picture, now there is a parity check for each uj and for
each vj with edges heading to three different places. The uj and vj checks are each connected to the associated
probability tensor Pj (again assuming the distribution PE is independent). Another set of edges connects the uj

and vj checks to the appropriate components of w(rm,l); defining w(rm,l) = (rx, rz) with rx and rz elements of
Fn
2 , the uj node is connected to the value rxj and the vj node to the value rzj . Finally, since the λj participate in

many parity checks, there is an equality node for each λj , connected to those ui and vi for which w(sj)i = 1 and
w(sj)i+n = 1, respectively.

+rx1 + rz1

P1

+rx2 + rz2

P2

+rx3 + rz3

P3

+rx4 + rz4

P4

+rx5 + rz5

P5

= = = =

Figure 3: Generator picture tensor network of the 5-qubit code. As before, the lines in the network are coloured to
improve readability.

Figure 3 depicts the resulting tensor network for the 5-qubit code, where we have chosen rm,l using only the logical
operators and the destabilizer as suggested above. Observe that the values of rm,l could be locally incorporated
into the check node tensors.

To summarize, the generator picture tensor network is obtained as follows.
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The tensor network is specified by the qubit probability distributions {Pj}nj=1, a representative Pauli opera-

tor r satisfying the syndrome m ∈ Fn−k
2 and logical contribution l, and the stabilizer generators {si ∈ S∗}n−k

i=1 .

1. The ith qubit is represented by

+ +

Pi with the red and blue parity nodes corresponding to the X and Z
components respectively.

2. Parity node ui is connected to the value w(r)i and parity node vj to w(r)i+n.

3. Each stabilizer generator sj is represented by an equality node.

4. Equality node sj is connected to parity node ui when w(sj)i = 1 and to parity node vj when w(sj)i+n = 1.

3.3 Bit- and phase-flip Noise on CSS Codes

Consider the special case where the considered code is CSS, i.e. all stabilizer generators are either purely X-type
or Z-type. We will assume that the logical generators are chosen such that they are also all X-type or Z-type.
Furthermore, assume that the noise model is given by independent X and Z errors on every qubit

Pi(1) = (1− pxi )(1− pzi ) (27a)

Pi(σX) = pxi (1− pzi ) (27b)

Pi(σZ) = (1− pxi )p
z
i (27c)

Pi(σY ) = pxi p
z
i (27d)

for some pxi , p
z
i ∈ [0, 1]. In terms of the tensor representation of the distribution of noise on a single qubit, this

structure means that we can separate

Pi into
P x
i P z

i

where P x
i and P z

i represent the vectors (1− pxi , p
x
i ) and (1− pzi , p

z
i ).

Under these assumptions the tensor network (both in the detector and generator pictures) separates into two
disjoint sub-networks. One network is responsible for the decoding decision for Z-type logical operators (i.e. the
problem of decoding bit-flip errors) and the other is responsible for the decoding decision for X-type logicals. To see
this, notice that in the detector picture, the parity checks only act on one of the two sub-networks. Similarly, the
logical component of the representative chosen in the generator picture can be separated into X-type and Z-type
logicals, which again only impact the respective sub-network.

In the case when either all pxi are zero or all pzi are zero, one of the two sub-networks trivially contracts to
1 and can be omitted, meaning that only the other sub-network remains. More concretely, only one of the two
stabilizer types (either X or Z type) remains represented as nodes in the tensor network. Interestingly, depending
on whether one is in the detector or generator picture, the remaining type is different. For instance, when one
considers pure bit-flip noise on a CSS code, then the generator picture involves the Z-type stabilizers, whereas
the generator picture involves the X-type stabilizers. If we incorporate the remaining probability tensors into the
neighboring = or + nodes, the remaining graph is a bipartite graph with one subgraph containing = nodes and the
other + nodes. In the detector picture under bit-flip noise, the connectivity of the bipartite graph is described by
the Z-type parity check matrix matrix HZ of the CSS codes, whereas in the generator picture under bit-flip noise
the connectivity is described by a dual matrix GZ which fulfills HZ · GT

Z = 0. This formalizes the notion of the
generator picture being the dual of the detector picture.

As an illustrative example, Figures 4c and 4d depict the detector and generator tensor networks for the d = 3
unrotated 2D surface code under bit-flip noise. Only half of the plaquettes are involved in the diagram, in contrary
to the detector and generator networks for general single-qubit i.i.d. noise, which are depicted in Figures 4a and 4b.
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Figure 4: Detector (a) and generator (b) tensor networks for d=3 unrotated surface code for an arbitrary i.i.d.
single-qubit Pauli noise model with marginals Pi. Detector (c) and generator (d) tensor networks for d=3 unrotated
surface code under bit-flip noise of strength p. Here =q is the tensor that takes value (1 − q) if all incoming legs
have value 1, value q if all incoming legs have value 0, and value 0 otherwise. Also, +q is the tensor that takes value
(1− q) if the incoming legs sum up to 0 (mod 2) and q otherwise. In (d) the pi are defined as p if the i-th entry rxi
of the representative bit-flip error is 0, and 1− p otherwise. The detector tensor networks in (a) and (c) implement
the Walsh-Hadamard transform discussed in Section 3.1.2.
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3.4 Detector Error Models for Circuit-level Noise

Mathematically speaking, the optimal decoding problem for a DEM is equivalent to the optimal decoding of one
sector of a CSS code, with the corresponding parity check matrix given by the DEM. The error mechanism play the
role of the qubits and the detectors play the role of the stabilizers generators. Thus, the detector and generator tensor
network constructions are directly applicable. The resulting tensor network will be local under the assumption that
all error mechanisms in the model are local, i.e. only trigger nearby detectors. In circuit-level noise, this is usually
achieved by defining detectors to be the parity of two subsequent measurements of the same stabilizer generator.

4 Decoding by Approximate Contraction

The previous section laid out in detail how the optimal decoding process can be expressed in terms of a sequence
of contractions of tensor networks that exhibit a topology respecting the locality of the underlying code. The
exact contraction of these tensor networks for larger codes is generally not feasible, so approximate contraction
schemes must be used for a practical decoder. While generally NP-hard, the approximate contraction of planar
two-dimensional tensor network is theoretically well understood and tends to behave very well when used in practice.
In the context of decoding of 2D Pauli codes, previous work by one of us demonstrated a powerful approximate
contraction scheme that proved extremely successful in decoding a wide variety of two-dimensional stabilizer codes
and effectively achieved the optimal threshold in all cases [8].

Generally, three-dimensional approximate contraction is significantly less well-behaved than its two-dimensional
counterpart. In essence, the problem lies in the impossibility to define a canonical gauge for a tensor network that is
not a tree [11, §5.2]. Still, there are some techniques that go beyond näıve time-evolving block decimation (TEBD)
to deal with three-dimensional networks, with a certain amount of success [13–15, 17, 39–42]. These techniques are
typically studied in the context of real or imaginary time evolution of two-dimensional condensed-matter systems,
but they can also be applied in the setting of quantum error correction. They incur different trade-offs between
accuracy and speed.

The technique we present works as follows: We assume that the 3D tensor network can be written as a stack of
layers where each layer has the identical topology and connections between layers may only occur between equivalent
sites. While the detector/generator tensor networks of most codes do not directly fulfill this assumption, we can
slightly adapt the networks to make it hold (see Section 5 for details). We sweep a 2D tensor network from bottom
to top in a TEBD-style fashion, contracting in one layer after the other while continually truncating the 2D tensor
network bonds. For example, if the 3D tensor network is a cubic lattice, then we would sweep a PEPS from one
side of the cube to the opposing side. The remaining two-dimension network is then contracted by sweeping an
MPS across it (in case it is not a square lattice, the sweep-line-based contraction algorithm from [8] can be used).

A layer is contracted into the 2D tensor network by decomposing it into a sequence of two-qubit gates which
can then be contracted one at a time. For some tensor networks (when the involved tensors are weighted delta or
check nodes for instance) this can be done in a natural way—this is the case for the 3D surface code under bit-flip
or phase-flip noise, as will be discussed in the next section. If no structure is known for doing the decomposition,
one can instead use the singular value decomposition to separate a two-qubit gate from the layer, as depicted in
figure Figure 5.

For the purpose of truncating the bond dimensions of the 2D tensor network we make use of the simple update
technique [13–15]. The idea here is to keep track of a rank-1 approximation of the environment for each tensor in
order to allow for a more accurate truncation. This means that on each bond, we keep track of a diagonal matrix.
This method was recently shown to be sufficient for fast and highly accurate simulations of 2D quantum systems
with more than a thousand qubits [16]. Its theoretical justification lies in the fact that it makes the loopy network
approach the Vidal gauge when the applied gates are close enough to the identity [17].

5 Results

5.1 Point Sector of 3D Surface Code

Following the construction described in Section 3.3, one can straightforwardly produce a detector and generator
tensor network. Consider the detector tensor network depicted in Figure 6a: it is almost of a cubic tensor network
form, except for some additional tensors on the bonds between the cubic lattice sites. In contrary, the detector
picture is less favorable and cannot be embedded as easily in a cubic lattice of the same size. For this reason, we
make use of the detector picture here.
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A B = UA UB

SA SB

VA VB 2-qubit gate

Figure 5: By iteratively repeating the depicted procedure, a layer from the 3D tensor network can be split into
a sequence of two-qubit gates. The decomposition of A into UA, SA and VA (respectively B into UB , SB and VB)
is done via the singular value decomposition. The contraction of VA and VB form the 2-qubit gate, while the
contraction of UA and SA, respectively UB and SB replace A and B in the layer. For practical applications, the
number of nonzero eigenvalues in SA and SB are truncated to a maximal value to avoid encountering tensors that
are too large.
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Figure 6: (a) Detector tensor network for the point sector of the 3D surface code of distance d = 3. The = and
+ tensors are weighted (not displayed in figure), since the probability tensors, Hadamard tensors and syndrome
values are incorporated in them. (b) Detector picture tensor network for the distance-3 3D surface code subject
to depolarizing noise. The d tensors represent the contraction of the single-qubit marginals Pi, the two connected
= tensors as well as the Hadamard gate for the Hadamard trick (where applicable). The syndrome values are
incorporated in the + nodes.

14



+ = + = + +

+ += 2-qubit gate

Figure 7: Splitting off of two-qubit gates from a layer of the 3D tensor network for the point sector 3D surface code
contraction.

The tensors on the bonds between two cubic lattice sites require a small modification in the contraction algorithm.
The tensors on the horizontal bonds can be integrated into the two-qubit gates of the simple update contraction
procedure, whereas the tensors on vertical bonds can be exactly contracted in between layers. Since the tensors on
the sites are either + or = nodes, the splitting up of the layer into two-qubit gates can be done very naturally as
depicted in Figure 7.

For our numerical experiments, we use a maximum bond dimension of 24 for the simple update contraction
procedure and a maximum bond dimension of 32 for the MPS contraction of the final 2D tensor network. The
results are depicted in Figure 1a. Also depicted are results for the minimum-weight perfect matching decoder, which
finds the most likely error and is thus the optimal decoder up to degeneracy. The matching decoder is the previous
state-of-the-art decoder for this problem [19], and the optimal threshold for the point sector is known to be around
3.3% [26]. We used PyMatching2 [24] for the matching implementation.

5.2 Loop Sector of 3D Surface Code

By the considerations in Section 3.3, the detector network for the point sector (see Figure 6a) and the generator
network for the loop sector of the 3D surface code are essentially the same, except the + and = nodes are inter-
changed. So due to the same reasoning as in the point sector, we choose to use the generator tensor network for
the loop sector as it fits more naturally in a cubic form. Since the tensor network is topologically the same as the
one of the point sector, we use the analogous contraction technique: The gate splitting is identical as in Figure 7,
except that the = and + nodes are interchanged.

For our numerical experiments, we use a maximum bond dimension of 24 for the simple update contraction
procedure and a maximum bond dimension of 48 for the MPS contraction of the final 2D tensor network. To
our knowledge, the state-of-the-art decoding algorithm on the loop sector of the 3D surface code is BP+OSD as
reported by Huang et al. [20], though they consider periodic boundary conditions. They report a threshold of
around 21.55%, while the optimal threshold is known [29, 30] to be roughly 23.180%. Our numerical results for
the TN decoder and BP+OSD (both on non-periodic boundary conditions) are depicted in Figure 1b. We employ
Roffe et al.’s BP+OSD implementation [43, 44] using the min-sum algorithm and combination-sweep OSD with an
order of 60.

5.3 Depolarizing Noise on 3D Surface Code

For depolarizing noise we make use of the detector tensor network. This means that now both the point-like and
loop-like stabilizers are represented by nodes in the network. This incurs an additional difficulty: In the standard
description of the 3D surface code, the loop-like stabilizer generators are redundant. Therefore, one must remove
a subset of the loop stabilizers to obtain a linearly independent generator set. For this purpose we remove all the
stabilizers on the ‘top’ of a cell, other than those on one (smooth) boundary. The tensor network for d = 3 is
depicted in Figure 6b. Notice that compared to the point or loop sector, the lattice size of the resulting cubic tensor
network is doubled, or respectively the volume is increased eight-fold. Furthermore, not all vertices and edges of the
cubic lattice are occupied. In order to bring the tensor network to a truly cubic form amenable to our contracition
algorithm, we fill up these empty slots with trivial tensors (having value 1) and trivial bonds of dimension 1.

We use a maximum bond dimension of 20 for the simple update contraction procedure and a maximum bond
dimension of 64 for the MPS contraction of the final 2D tensor network. The maximum bond dimension of the
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singular value decomposition of the splitting technique (see Figure 5) is chosen to be 4.
In Figure 1c we depict the numerical results comparing our TN decoder with the current state-of-the-art decoder,

which to our knowledge is BP+OSD which has been reported to have a threshold of 5.95 ± 0.03%[21]. Note
that our BP+OSD results seem to perform significantly better than the threshold indicated by these authors—
this could however just be boundary effects that disappear at larger distances. We use Roffe et al.’s BP+OSD
implementation [43, 44] using the min-sum algorithm and combination-sweep OSD with an order of 60. As in
[21], phase-flips are decoded assuming i.i.d. phase-flip noise first (with the noise rate given by the marginal of
depolarizing noise), and subsequently bit-flips are decoded, using the conditional distribution of bit-flips given the
phase-flip pattern from the first step.

We also attempted to realize a TN decoder using the generator tensor network, but it performed significantly
worse than the detector TN decoder.

5.4 Circuit-level Noise

We study the rotated surface code under circuit level depolarizing noise. More concretely, for a distance d code
we study the protocol consisting of d repeated stabilizer measurement rounds. The first X-stabilizer measurement
round serves as an initialization of the logical qubit in the X basis, and at the very end of the protocol all data
qubits are measured in the X basis to realize a logical X measurement. The goal of the decoder is to error-correct
the outcome of said logical X measurement. After each gate, after each reset and before every measurement, we
assume that the involved qubits undergo depolarizing noise (either 1-qubit or 2-qubit depolarizing noise accordingly)
of some strength p. We use the Stim package [22] to generate the DEM model, so we refer the readers to there for
more information about the precise details about the considered circuit.

We use the detector picture to represent the decoding problem. Therefore, following the discussion in Section 3.4,
the ith error mechanism of the DEM is represented by a weighted equality node in the tensor network, i.e. a tensor
that takes value (1− pi) if all incoming legs are 0, value pi if all incoming legs are 1 and value 0 elsewise. The ith
detector is represented by a check tensor that takes the value (1 −mi) if the parity of the incoming legs is 0 and
value mi elsewise. An equality and check node are connected if and only if the involved error mechanism causes
said detector to flip. We use the Walsh-Hadamard transform discussed in Section 3.1.2 to realize the logical parity
check. For example, Figure 8 depicts the circuit-level tensor network for the d = 3 rotated surface code. A depiction
of the d = 5 tensor network can be found at the end of the manuscript in Figure 10. Clearly, the resulting tensor
network is not even remotely close to a cubic structure: Some of the check nodes have a very high degree, which
is caused by the high number of distinct error mechanisms that can cause said detector to flip. Furthermore, the
size of the tensor network is much higher than the non-circuit-level noise counterparts: The d = 3, d = 5 and d = 7
tensor networks contain 245, 1799 and 6351 tensors respectively.

Figure 8: Circuit-level noise tensor network derived from detector error model for the d = 3 rotated surface code
with 3 rounds of measurements. They weighting of the check and equality nodes is not depicted. The Hadamard
nodes from the Walsh-Hadamard transform are also not depicted.

Clearly, the issues laid out above make it impossible to directly contract the circuit-level tensor network directly.
In fact, just näıvely storing the tensors would require an infeasible amount of memory due to the high tensor degrees.
In order to address these problems, we propose the following scheme, in which the complicated DEM-derived tensor
network is compressed and brought into a cubic form more amenable to our contraction scheme.

First, only consider the check nodes (corresponding to the detectors) and arrange them in a cubic lattice
according to their location in space-time. Then, add the equality nodes (corresponding to the error mechanisms)
one-by-one into this tensor network. If this step was done without approximation, then the resulting tensor network
would clearly be equivalent to the desired circuit-level tensor network. To bring the equality node into something
that respects the cubic lattice structure, we “snake” it along the lattice as depicted in Figure 9. Clearly, this will
cause the bond dimensions of the cubic tensor network to grow very quickly, so we use the simple update method
to truncate the bonds to some maximum bond dimension.

During this compression step we keep an open edge on each site to represent the detector measurement outcome.
When a sample is to be decoded, we contract the corresponding observed detector values on each site of the cubic
tensor network. The resulting 3D tensor network can then be contracted with our technique described in Section 4.
Thanks to this trick, the compression step needs only to be performed once offline and not every time a new sample
is to be decoded. This largely alleviates the cost of this compression step and allows us to perform it with much
larger bond dimensions.
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Figure 9: “Snaking” of a weighted equality node corresponding to an error mechanism along the cubic TN. The
red dashed lines depict the updated tensors of the cubic TN. Clearly, the dimensions of the bonds involved in the
snaking are doubled.

Figure 1d depicts the numerical results of our experiments comparing the tensor network decoder to the com-
monly used minimum-weight perfect matching decoder, implemented using PyMatching [23, 24]. For the offline
pre-compression of the circuit-level tensor network, we use a maximum bond dimension of 16. Technically, if the
physical error rate p is varied, one would have to generate a separate pre-compressed tensor network for every
value of p. For convenience, we forgo this step and only generate one pre-compressed tensor network for a value of
p = 1%. Before being used for decoding (but after all error mechanisms have been compressed), we further truncate
all bonds to a dimension of 8 in order to improve the speed of the decoder. To contract the resulting 3D cubic
tensor network, we use a maximum bond dimension of 12 for the simple update, a maximum bond dimension of 64
for the MPS contraction and maximum bond dimension of 12 for the splitting process. For d = 7, we increase the
simple update bond dimension to 20 and the splitting bond dimension to 14.

6 Discussion

Decoding 3D codes is a notoriously difficult problem, especially when the code does not allow for a matching-like
decoding algorithm. We propose a new ML-approximating decoding scheme that outperforms the current state-
of-the-art algorithm on the point sector, loop sector, and depolarizing noise for 3D surface codes of moderate size.
Once the size of the code becomes too large, typically around linear size (code distance) d = 11, our 3D tensor
network decoder starts facing numerical issues, which degrades the accuracy. This is in stark contrast to the 2D
tensor network decoder (based on MPS truncation) which “out of the box” is both fast and reliable even for large
codes.

This can be most likely attributed to the lack of a canonical form which cannot be defined for a PEPS in
contrast to an MPS, making it difficult to realize bond truncations accurately. There are many techniques and
heuristics for dealing with this issue. While we roughly explored several of them during the development of this
paper, we settled for the simple update technique, since in our tests it provided the best accuracy-to-speed ratio.
We experimented with bringing the PEPS into the Vidal gauge before truncation, either with belief propagation or
with repeated trivial simple update steps, but the convergence of the gauging procedure was very slow and made
up for the vast majority of the contraction time. We also investigated exactly contracting a complete layer at once
before truncating the resulting bonds, but again the accuracy-time trade-off was not favorable.

The space of possibilities to realize approximate 3D tensor network contraction is much larger than in 2D, and
is still an active field of research. Certainly the possibilities greatly exceed our limited exploration. We therefore
expect that future work will be able to improve upon our results.

The 3D surface code can in some sense be considered one of the simplest 3D codes to decode, since the tensor
network structure is naturally (almost) cubic. To show that our 3D contraction algorithm does not necessarily rely
on a code that induces such a nicely structured tensor network, we also demonstrate our technique for decoding
circuit-level noise, which arguably exhibits the most complicated structure encountered in practice. We show that
our technique outperforms the matching decoder, though we did not compare it to the state-of-the-art algorithm
belief-matching, which currently does not have a publicly available implementation. Our technique is not very
optimized, but rather serves the purpose of demonstrating that the general TN decoding method works in principle.
We fully expect that more careful and tedious tuning of the decoder parameters could significantly improve the
performance and/or accuracy of the TN decoder on circuit-level noise. Similarly, we spent very little time with
trying out different snaking and truncation procedures for the tensor network pre-compression step. Further research
in optimizing the decoder and comparing it with other circuit-level decoders is necessary. The possible impact for
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near-term quantum error correction experiments is very high, since the involved distances are rather small and the
decoding can typically be performed offline. So a very accurate-but-slow tensor network decoder could facilitate
the demonstration of break-even error correction.

Another point that requires further investigation is whether the detector or generator picture performs better
in practice. While we did not test this systematically, we did notice that the detector tensor network seems much
easier to contract for depolarizing noise compared to the generator tensor network. Also for the circuit-level noise
one could make use of the generator picture tensor network, though this would require first finding a dual parity
check matrix to the detector error model.
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