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Introduction

Tensor network decoding has proven tremendously
successful and flexible in decoding 2D-local codes.
In this work we extend TN decoding into the third-
dimension by generalising the plane-sweep con-
traction scheme of Ref. [3, 4]. As well as allowing
us to study 3D codes, this allows us to decode
2D codes with noisy measurements (under both a
phenomenological model and circuit-level noise).

Decoding Pauli Errors

Any Pauli error E can be decomposed as
E = D · S · L, where L is the logical part of the
error, S the stabiliser part, and D the ‘destabil-
iser’ part. D is determined by the syndrome, and
S is irrelevant to decoding, and so decoding just
reduces to determining the L part. As such, op-
timal decoding can be expressed as:

Given a syndrome s, what is the most likely
logical part L among all errors which are

compatible with s?

The Role of Degeneracy

A natural starting point would be to find the most
likely error among all those compatible with the
observed syndrome, this is referred to as the max-
imum probability decoder:

MPD: x 7→ arg max
E

{Pr(E) | s(E) = x}

This is not optimal however, as multiple stabiliser-
equivalent errors can contribute to the probabil-
ity of a given logical class. As such the optimal
decoder, also known as the maximum likelihood
decoder, optimises over these logical classes:

MLD: x 7→ arg max
E

 ∑
F∼E

Pr(F )
∣∣∣∣∣∣ s(E) = x



Tensor Network Decoding

The class probabilities ∑
F∼E Pr(F ) admit

a tensor network representation, and local
codes/noise give local TNs. Specifically, 3D codes
of 2D codes with noisy measurements give 3D de-
coding TNs. By developing an approximate 3D
contraction scheme we can therefore approximate
the ML decoder in these settings.
Previous works relied on a tensor network con-
struction we refer to as the generator picture. As
well as this we consider a dual construction we
term the detector picture, which can be more ef-
ficiently contracted for some of the code/noise
combinations we consider.
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Generator picture

In the generator picture we construct the class probab-
ilities from the bottom up. We start with a represent-
ative Pauli error E, and summing over all syndrome
equivalent errors. In other words, in this picture the
class probabilities are evaluated as

Pr(E) =
∑

{Pr(ES) | S ∈ S} , (GenPic)
where S denotes the stabiliser group.

Detector picture

In the detector picture we construct the class probab-
ilities from the top down. Here we start by considering
a summation over all Pauli errors, and then imposing
the stabiliser and logical measurements to restrict this
set down until we arrive at the class probabilities. In
other words, in this picture the class probabilities are
evaluated as

Pr(E) =
∑Pr(F )

∣∣∣∣∣∣ s(F ) = s(E)
l(F ) = l(E)

 , (DetPic)

where s/l denote the outcomes of the syn-
drome/logical measurements.

Example: 3-qubit repetition code

Consider the xor and equality tensors:
i

kj

:= i ⊕ j ⊕ k

i

kj

:= δi,j,k

In the generator picture we use the stabilisers
S1 = ZZI, S2 = IZZ. (1)

If we consider an error E described by the strings x⃗
and z⃗, then the generator form of Pr(E) is

P1

x1

P2

x2

P3

x3z1 z2 z3

In the detector picture we use the detectors,
D1 = XII, LX = XXX,

D2 = IIX, LZ = IZI.
(2)

If we consider an error E whose measurement out-
comes are given by s1, s2, lz, lx, then the detector form
of Pr(E) is

P1 P2 P3

s1 s2lz lx

P1 P2 P3

Circuit-level noise

By representing circuit-level noise through the detector
error model [2] we can decode it in the detector picture.
Doing so gives a very large network however, which pre-
vents us from going to large distances. For example, here
is the network for d = 3 circuit-level depolarising noise:
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Results

TND non-TND Optimal
Point sec. 3.136+0.012

−0.014% 2.93 ± 0.02% ≈ 3.3%
Loop sec. 22.788+0.123

−0.107% 21.55 ± 0.01% 23.180 ± 0.004%
Dep. 7.067+0.034

−0.033% 6.715 ± 0.012% ?
Circuit dep. ≈ 0.8% ≈ 0.78% ?

d = 3 d = 5 d = 7 d = 9 d = 11

3.0% 3.2%

6%

8%

10%
MWPM

TN decoder

(a)
20% 21% 22% 23%

10%

20%

30% BP+OSD

TN decoder

(b)

6.2% 6.6% 7.0% 7.4%
4%

8%

12%
BP+OSD

TN decoder

(c)
0.6% 0.7% 0.8% 0.9%

1%

2%

3%

4%
MWPM

TN decoder

(d)
Figure: Logical vs. physical error rates for (a) point sector, (b) loop
sector, and (c) depolarizing noise for the 3D unrotated surface code,
and circuit level depolarising noise for the rotated 2D surface code.

Plane-sweep Contraction

Contraction of a local tensor network can be approximated by a plane-sweep algorithm. The idea is to contract the
network, tensor-by-tensor, into an MPS (2D) or PEPS (3D), using bond truncation to compress down this representation.
Refs. [3, 4] developed this method in 2D, and in this work we extend this to 3D.


