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The surface code, with a simple modification, exhibits ultrahigh error-correction thresholds when
the noise is biased toward dephasing. Here, we identify features of the surface code responsible
for these ultrahigh thresholds. We provide strong evidence that the threshold error rate of the
surface code tracks the hashing bound exactly for all biases and show how to exploit these features
to achieve significant improvement in logical failure rate. First, we consider the infinite bias limit,
meaning pure dephasing. We prove that the error threshold of the modified surface code for pure
dephasing noise is 50%, i.e., that all qubits are fully dephased, and this threshold can be achieved
by a polynomial-time decoding algorithm. We demonstrate that the subthreshold behavior of the
code depends critically on the precise shape and boundary conditions of the code. That is, for
rectangular surface codes with standard rough and smooth open boundaries, it is controlled by the
parameter g = gcd(j, k), where j and k are dimensions of the surface code lattice. We demonstrate
a significant improvement in logical failure rate with pure dephasing for coprime codes that have
g = 1, and closely-related rotated codes, which have a modified boundary. The effect is dramatic:
The same logical failure rate achievable with a square surface code and n physical qubits can be
obtained with a coprime or rotated surface code using only O(

√
n) physical qubits. Finally, we

use approximate maximum-likelihood decoding to demonstrate that this improvement persists for a
general Pauli noise biased toward dephasing. In particular, comparing with a square surface code,
we observe a significant improvement in logical failure rate against biased noise using a rotated
surface code with approximately half the number of physical qubits.

I. INTRODUCTION

Quantum error-correcting codes are expected to play a
fundamental role in enabling quantum computers to op-
erate at a large scale in the presence of noise. The surface
code [1], an example of a topological stabilizer code [2], is
one of the most studied and promising candidates, giving
excellence performance for error correction while requir-
ing only check operators (stabilizers) acting on a small
number of neighboring qubits [3].

The error-correction threshold of a code family, which
denotes the physical error rate below which the logical
failure rate can be made arbitrarily small by increasing
the code size, is strongly dependent on the noise model.
The most commonly studied noise model is uniform de-
polarization of all qubits, where independent single-qubit
Pauli X, Y , and Z errors occur at equal rates. How-
ever, in many quantum architectures such as certain su-
perconducting qubits [4], quantum dots [5], and trapped
ions [6], among others, the noise is biased toward dephas-
ing, meaning that Z errors occur much more frequently
than other errors. Recently, it was shown that, with a
simple modification, the surface code exhibits ultrahigh
thresholds with such Z-biased noise [7], where bias is de-
fined as the ratio of the probability of a high-rate Z error

over the probability of a low-rate X or Y error.
In this paper, we identify and characterize the features

of the noise-tailored surface code that contribute to its ul-
trahigh thresholds with Z-biased noise and demonstrate
a further significant improvement in logical failure rate.
We note that the modification of the surface code, de-
scribed in Ref. [7], simply exchanges the roles of Z and
Y operators in stabilizer and logical operator definitions.
Therefore, results for the modified surface code with Z-
biased noise can equivalently be expressed in terms of
the unmodified surface code and Y -biased noise, where
Y errors occur more frequently than X or Z errors. In
order to frame our analysis in the context of the famil-
iar unmodified surface code and to simplify comparison
with other codes, we consider pure Y noise and Y -biased
noise on the surface code, with X- and Z-parity checks,
throughout this paper. However, we emphasize that our
results apply equally to the modified surface code with
pure Z noise or the Z-biased noise prevalent in many
quantum architectures.
Our main numerical result is to demonstrate that the

threshold error rate of the tailored surface code satu-
rates the hashing bound for all biases. While the numer-
ical results of Ref. [7] indicate that the threshold error
rate of the tailored surface code approaches the hashing
bound for low to moderate bias, the threshold estimates
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FIG. 1. Threshold error rate pc as a function of bias η.
Points show threshold estimates for the surface code. Error
bars indicate one standard deviation relative to the fitting
procedure. The point at the smallest bias corresponds to
η = 0.5 or standard depolarizing noise. The point at infinite
bias indicates the analytically proven 50% threshold value.
The gray line is the hashing bound for the associated Pauli
error channel.

fall short for higher and infinite bias. Using a tensor-
network decoder that converges much more strongly with
biased noise, we significantly improve on the results of
Ref. [7]. Our new results are summarized in Fig. 1, pro-
viding strong evidence that the hashing bound can be
achieved with a tailored surface code.

Our main analytical result is a structural theorem that
reveals a hidden concatenated form of the surface code.
We show that, in the limit of pure Y noise, the surface
code can be viewed as a classical concatenated code with
two concatenation levels. The top level contains the so-
called cycle code whose parity checks correspond to cy-
cles in the complete graph. The bottom level contains
several copies of the repetition code. We prove that the
cycle code has an error threshold of 50% and give an
efficient decoding algorithm that achieves this thresh-
old. As a corollary, we show that the threshold of the
surface code with pure Y noise is 50%, thus answering
an open question posed in Ref. [7]. The concatenated
structure described above is controlled by the parameter
g = gcd(j, k), where j and k are dimensions of the sur-
face code lattice. In particular, the top-level cycle code
has length O(g2), while the bottom-level repetition codes
have length O(jk/g2). Two important special cases are
coprime codes and square codes that have g = 1 and
g = j = k, respectively. Informally, a coprime surface
code can be viewed as a repetition code, whereas a square
surface code can be viewed as a cycle code (in the limit
of pure Y noise). We also show that a closely-related
family of surface codes called rotated codes (defined by
boundaries formed at 45◦ relative to the standard sur-
face code family) can also be seen as repetition codes

against pure Y noise. Although the repetition and the
cycle codes both have a 50% error threshold, we argue
that the former performs much better in the subthresh-
old regime. This result suggests that coprime and rotated
surface codes may have an intrinsic advantage in correct-
ing strongly biased noise.

We present further insights into the origins of the ul-
trahigh thresholds by investigating the form of logical op-
erators. We show that logical operators consistent with
pure Y noise are much rarer and heavier than those con-
sistent with pure X or Z noise, and their structure de-
pends strongly on the parameter g. In particular, there
are 2g−1 Y -type logical operators of which the minimum
weight is (2g − 1)(jk/g2), which compares to 2j(k−1) X-
type logical operators of which the minimum weight is j.
In the case of coprime codes, there is only one Y -type
logical operator, and its weight is jk. Hence, the dis-
tance of coprime codes to pure Y noise is O(n), whereas
for square codes it is O(

√
n). We extend these results to

rotated surface codes. We find that rotated codes, with
odd linear dimensions, have similar features to coprime
codes; in particular, they admit only one Y -type logical
operator, and its weight is n. This result is a further
improvement over coprime codes, since rotated surface
codes are, in a sense, optimal [8]. That is, they achieve
the same distance as standard surface codes with approx-
imately half the number of physical qubits.

Leveraging features of the structure of rotated codes
with pure Y noise, we develop a tensor-network decoder
that achieves much more strongly converged decoding
with Y -biased noise compared with the decoder in Ref. [9]
and exact maximum-likelihood decoding in the limit of
pure Y noise.

We perform numerical simulations, using exact
maximum-likelihood decoding to confirm the 50% thresh-
old for the surface code with pure Y noise and demon-
strate a significant reduction in logical failure rate for co-
prime and rotated codes compared to square codes with
pure Y noise. In particular, we demonstrate that the log-
ical failure rate decays exponentially with the distance to
pure Y noise such that a target logical failure rate may
be achieved with quadratically fewer physical qubits by
using coprime or rotated codes compared with standard
(square) surface codes.

Finally, we demonstrate a remarkable property of sur-
face codes: By removing approximately half the physical
qubits from a square code to yield a rotated code with
the same odd linear dimensions, we observe a significant
reduction in logical failure rate with biased noise. Specif-
ically, we perform numerical simulations, using strongly
converged approximate maximum-likelihood decoding, to
demonstrate the aforementioned significant reduction in
logical failure rate against biased noise that is achieved
using a rotated j×j code, containing n = j2 physi-
cal qubits, compared to a square j×j code, containing
n = 2j2 − 2j + 1 physical qubits. Figure 2 summarizes
this result, comparing logical failure rate as a function
of physical error probability for a rotated 9×9 code (81
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FIG. 2. Logical failure rates fsquare and frotated as a function of physical error probability p for small comparable square
and rotated 9×9 codes and the logarithm of the ratio of logical failure rates log10(frotated/fsquare) with noise biases η ∈
{0.5, 10, 100, 1000, 10 000,∞}. Error bars indicate one standard deviation. Data points are sample means over 30 000 and
1 200 000 runs for the square and rotated codes, respectively, using approximate maximum-likelihood decoding converged to
within half a standard deviation for both codes. Dotted lines connect successive data points for a given η.

qubits) and a square 9×9 code (145 qubits) across a range
of biases. We see that the advantage of the rotated code
over the square code is greatest in the limit of pure Y
noise (η = ∞) and remains significant down to a more
modest bias, η = 100 (where Y errors are 100 times more
likely than both X and Z errors). We further argue that,
for a given bias, the relative advantage of (odd) rotated
codes over square codes increases with code size, until
low-rate errors become the dominant source of logical
failure and high-rate errors are effectively suppressed,
motivating the search for efficient near-optimal biased-
noise decoders for rotated codes.

Note that this performance with biased noise is not
shared by all topological codes; in stark contrast, the tri-
angular 6.6.6 color code [10] exhibits a decrease in thresh-
old with bias; see Appendix A.

The paper is structured as follows. Section II provides
some definitions used throughout the paper. Our main
analytical results for surface codes with pure Y noise are
in Sec. III. Our numerical results for surface codes with
pure Y noise and Y -biased noise are in Secs. IV and V, re-
spectively. Section VI defines the tensor-network decoder
used in simulations of Y -biased noise on rotated codes.
We conclude in Sec. VII with a discussion of our results in
the context of prior work and raise some open questions
for future work. Finally, Appendix A gives comparative
results for color codes, and Appendix B defines the exact
maximum-likelihood decoder used in simulations of pure
Y noise on square and coprime surface codes.

II. DEFINITIONS

Standard surface code.— We consider j×k standard
surface codes [1] on a square lattice with “smooth”
top and bottom boundaries and “rough” left and right
boundaries. Physical qubits are associated with edges
on the lattice. Following the usual convention, stabilizer

generators consist of X operators on edges around ver-
tices, Av =

∏
e∈vXe, and Z operators on edges around

plaquettes, Bp =
∏

e∈p Ze. The stabilizer group is, there-

fore, G = ⟨Av, Bp⟩. Up to multiplication by an element of

G, the X (Z) logical operator consists of X (Z) operators
along the left (top) edge, such that X,Z ∈ C(G) \ G and
XZ = −ZX, where C(G) = {f ∈ P : fg = gf ∀ g ∈ G} is
the centralizer of G and P is the group of n-qubit Paulis.
As such, a j×k surface code encodes one logical qubit
into n = 2jk − j − k + 1 physical qubits with distance
d = min(j, k). Figure 3 illustrates a 4×5 surface code.
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FIG. 3. Standard 4×5 surface code, with logical operators
given by a product of X along the left edge and a product of
Z along the top edge. Stabilizer generators are shown at the
right.

Rotated surface code.— We also consider rotated sur-
face codes, which are defined by drawing the boundary
at 45◦ relative to the standard surface code lattice [8];
see Fig. 4(a). As with standard codes, stabilizer genera-
tors consist of X (Z) operators on edges around vertices
(plaquettes), with these restricted to two qubits on the
boundaries. The X (Z) logical operator consists of X
(Z) operators along the northeast (northwest) edge. The
rotated code is usually, and equivalently, depicted as in
Fig. 4(b), where shaded and blank faces correspond toX-
and Z-type stabilizer generators, respectively. As such,
a rotated j×k surface code encodes one logical qubit into
n = jk physical qubits with distance d = min(j, k). Un-
less otherwise stated, we consider rotated surface codes
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with j and k odd.

(a) (b)

FIG. 4. (a) Rotated 5×5 surface code defined by drawing the
boundary at 45◦ relative to the surface code lattice. Logical
operators are given by a product of X along the northeast
edge and Z along the northwest edge. As with the standard
code, stabilizer generators consist ofX (Z) operators on edges
around vertices (plaquettes). (b) Rotated 5×5 surface code as
it is usually, and equivalently, depicted, where shaded (blank)
faces corresponding to X-type (Z-type) stabilizer generators.

Surface code families — For standard j×k surface
codes, we define the following code families: square where
j = k; gcd(j, k) = g const; and coprime where g=1 (spe-
cial case of g constant). In addition, for rotated j×k
surface codes, we define the family of rotated codes with
j and k odd.
Y -type stabilizers and logical operators.— We define

a Y -type stabilizer to be any operator on a code that
is in the stabilizer group G and consists only of Y and
identity single-qubit Paulis. We define a Y -type logical
operator to be any operator on a code that is in C(G) \ G
and consists only of Y and identity single-qubit Paulis.
We defineX- and Z-type stabilizers and logical operators
analogously. As usual, the weight of an operator is the
number of nonidentity single-qubit Paulis applied by the
operator.
Y -distance.— We define Y -distance, or distance dY

to pure Y noise, of a code as the weight of the minimum-
weight Y -type logical operator. X- and Z-distance are
defined analogously. The overall distance of the code
is defined in the usual way and is upper bounded by
min(dX , dY , dZ).
Y -biased noise.— Several conventions have previ-

ously been used to define biased Pauli noise mod-
els [4, 7, 11–23]. We adapt the approach of Ref. [7] to
Y -biased noise, by considering an independent, identi-
cally distributed Pauli noise model defined by an array
p = (1 − p, pX , pY , pZ) corresponding to the probabili-
ties of each single-qubit Pauli I (no error), X, Y , and Z,
respectively, such that the probability of any error on a
single qubit is p = pX + pY + pZ . We define bias η to be
the ratio of the probability of a Y error to the probability
of a non-Y error such that η = pY /(pX+pZ). For simplic-
ity, we restrict to the case pX = pZ . With this definition
η = 1/2 corresponds to standard depolarizing noise with
pX = pY = pZ = p/3, and the limit η → ∞ corresponds
to pure Y noise, i.e., only Y errors with probability p.
We define X- and Z-biased noise analogously.

III. FEATURES OF SURFACE CODES WITH
PURE Y NOISE

In this section, we present our analytical results for
surface codes with pure Y noise. In Secs. III A–IIID,
we present results for standard surface codes, and, in
Sec. III E, we relate these results to rotated surface codes.
We first highlight the specificities of syndromes of pure Y
noise. Our main result reveals that error correction with
the standard surface code with pure Y noise is equiva-
lent to a concatenation of two classical codes: the rep-
etition code at the bottom level and the cycle code at
the top level. As a corollary, we show that the surface
code with pure Y noise has a threshold of 50%. We
also highlight that, for standard j×k surface codes with
small g = gcd(j, k), the more effective repetition code
dominates the performance of the code. We then give
explicit formulas for the minimum weight and count of
Y -type logical operators. Finally, we relate these results
to rotated surface codes. These results explain the origins
of the ultrahigh thresholds of the surface code with Y -
biased noise, as seen in Ref. [7] and improved in Sec. VA,
as well as the lower logical failure rates seen with coprime
and rotated surface codes, presented in Secs. IVA and
VB.

A. Syndromes of pure Y noise

An obvious feature of Y noise on the surface code is
that Y errors anticommute with both X- and Z-type sta-
bilizer generators, providing additional bits of syndrome
information. For comparison, Fig. 5 shows a sample of Y -
error configurations alongside identically placed X- and
Z-error configurations with corresponding anticommut-
ing syndrome locations for each error type. In each case,
we see that Y -error strings anticommute with more syn-
drome locations than X- or Z-error strings, providing
the decoder with more information about the location of
errors to be corrected.
We remark that the displacement between the X- and

Z-type stabilizer generators appears to be significant.
For example, the color 6.6.6 code has colocated X- and
Z-type stabilizer generators, so that, even if Y errors an-
ticommute with more stabilizer generators, the number
of distinct syndrome locations triggered by Y errors is no
greater than for X or Z errors.

B. Structure of the standard surface code with
pure Y noise

In this section, we consider standard surface codes sub-
ject to pure Y noise. We describe a polynomial-time
decoding algorithm and prove that it achieves an error
threshold of 50%. We also derive an exponential upper
bound on the probability of logical errors in the sub-
threshold regime. Our main result is a structural theo-
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X-error strings Y -error strings Z-error strings

FIG. 5. A sample ofX-, Y -, and Z-error strings, indicated by
colored circles, with corresponding anticommuting syndrome
locations, indicated by yellow stars.

rem that reveals a hidden concatenated structure of the
surface code and highlights the role of the parameter
g = gcd (j, k). The theorem implies that error correction
with the surface code subject to Y noise can be viewed
as a concatenation of two classical codes: the repetition
code at the bottom level and the so-called cycle code at
the top level. Both codes admit efficient decoding al-
gorithms and have an error threshold of 50%, although
the repetition code scores much better in terms of the
logical error probability. We show that, for a fixed num-
ber of qubits, the size of each code can vary drastically
depending on the value of g. Loosely speaking, the error-
correction workload is shared between the two codes such
that for small g the dominant contribution comes from
the more effective repetition code, which explains the en-
hanced performance of coprime surface codes (g = 1)
observed in the numerics.

1. Concatenated structure

Consider a Pauli error

P (y) ≡ Y y1

1 ⊗ Y y2

2 ⊗ · · · ⊗ Y yn
n , (1)

where y ∈ {0, 1}n. As described in Sec. III A, the syn-
drome of P (y) is given by

Av(y) =
∑
e∈v

ye and Bp(y) =
∑
e∈p

ye (2)

where v and p run over all vertices and all plaquettes of
the lattice and the sums are modulo two. A decoding
algorithm takes as input the error syndrome and outputs
a candidate recovery operator P (y′) that agrees with the
observed syndrome. The decoding succeeds if y′ = y and
fails otherwise. [More generally, the decoder needs to
identify only the equivalence class of errors that contains
P (y), where the equivalence is defined modulo stabilizers
of the surface code.]

Consider a classical linear code of length n defined by
the parity checks Av(y) = 0 and Bp(y) = 0 for all v and
p. We shall refer to this code as a Y-code. As described
above, error correction for the surface code subject to
Y -noise is equivalent to error correction for the Y -code
subject to classical bit-flip errors. We now establish the
structure of the Y -code. For any integer m ≥ 3, let Km

be the complete graph with m vertices and e = m(m −
1)/2 edges. Consider bit strings x ∈ {0, 1}e such that
bits of x are associated with edges of the graph Km. Let
xi,j be the bit associated with an edge (i, j). Here it is
understood that xi,j = xj,i. Define a cycle code Cm of
order m that encodes m − 1 bits into e bits with parity
checks

xi,j ⊕ xj,k ⊕ xi,k = 0 for all 1 ≤ i < j < k ≤ m. (3)

Thus, parity checks of Cm correspond to cycles (triangles)
in the graph Km. Note that Eq. (3) defines a redundant
set of parity checks. It is well known that any connected
graph with m vertices and e edges has e−m+1 indepen-
dent cycles. Thus, Cm has e−(m−1) independent parity
checks. The number of encoded bits is m− 1. Note that
C2 is a trivial code (it has no parity checks). Let REP(m)
be the repetition code that encodes one bit into m bits.
We can now describe the structure of the Y -code.

Theorem 1 (Y -code structure). The Y -code is a con-
catenation of the cycle code Cg+1 at the top level and
g(g+1)/2 repetition codes at the bottom level. The latter
consists of repetition codes REP(jk/g2), REP(2jk/g2),
and REP(4jk/g2) with multiplicities 1, 2(g − 1), and
g(g + 1)/2− 2g + 1, respectively.

An important corollary of the theorem is that a decod-
ing algorithm for the cycle code can be directly applied
to correcting Y errors in the surface code. Indeed, a
decoder for the Y -code can be constructed in a level-by-
level fashion such that the bottom-level repetition codes
are decoded first and the top-level cycle code is decoded
afterwards.

For example, Theorem 1 implies that, with pure Y
noise, a coprime (g = 1) surface code is essentially a
single repetition code of a size growing linearly with
n, whereas a square surface code is equivalent to the
concatenation of bottom-level fixed-size repetition codes
REP(1), REP(2), and REP(4) and a top-level cycle code
of a size growing linearly with n, where n is the number
of physical qubits in the surface code.

Proof. Let us first prove the theorem in the special case of
square surface codes, j = k = g. Let G ⊂ {0, 1}n be the
code space of the Y -code. We use a particular basis set
of codewords called diagonals. The j× j lattice has j+1
diagonals denoted δ1, δ2, . . . , δj+1 ∈ G; see Fig. 6. Given
a codeword y ∈ G, let ∂y ∈ {0, 1}j be the restriction of y
onto the top horizontal row of edges in the surface code
lattice. We claim that y is uniquely determined by ∂y.
Indeed, let H1, . . . ,Hj be the rows of horizontal edges
(counting from the top). Let V2, . . . , Vj be the rows of
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FIG. 6. Diagonals δi for the 4× 4 surface code. We consider
the symmetry group R generated by reflections of the lattice
against δ1 and δ5. Note that any diagonal δi is symmetric
under reflections from R.

vertical edges (counting from the top). By definition, the
restriction of y onto H1 coincides with ∂y. Suppose the
restriction of y onto H1V2 . . . Hp is already determined
(initially p = 1). Vertex parity checks Av(y) = 0 lo-
cated at the row Hp then determine the restriction of y
onto Vp+1. Likewise, suppose the restriction of y onto
H1V2 . . . HpVp is already determined. Plaquette parity
checks Bp(y) = 0 located at the row Vp then determine
the restriction of y onto Hp+1. Proceeding inductively
shows that any codeword y ∈ G is uniquely determined
by ∂y.
Define bit strings

e1 = 100 . . . 0, e2 = 010 . . . 0, e3 = 001 . . . 0 etc.

Then ∂δ1 = e1, ∂δi = ei−1+ei for 2 ≤ i ≤ j, and ∂δj+1 =
ej ; see Fig. 6. It follows that ∂δ1, . . . , ∂δj span the binary
space {0, 1}j . Accordingly, the diagonals δ1, . . . , δj span
the code space G and

δj+1 = δ1 ⊕ δ2 ⊕ · · · ⊕ δj .

In particular, dim (G) = j, that is, the Y -code encodes j
bits into n bits.

FIG. 7. A set of qubits O such that each orbit of R contains
exactly one qubit from O. In this example the group R has
ten orbits of size 1, 2, and 4.

Let R ∼= Z2×Z2 be a group generated by reflections of
the lattice against the diagonals δ1 and δj+1. Note that
any diagonal δi is invariant under reflections from R; see
Fig. 6. Suppose f is an edge of the surface code lattice.
Let R(f) be the orbit of f under the action of R. The

["#] ["%] ["&]

["'] ["(]

FIG. 8. Restrictions of the diagonal δi onto O define a basis
set of codewords for the top-level code.

above shows that any diagonal δi is constant on orbits
of R; that is, R(f) = R(g) implies that δif = δig. Since

the diagonals δi span the full code space G, we conclude
that any codeword y ∈ G is constant on orbits of R; that
is, R(f) = R(g) implies that yf = yg. Equivalently,
each orbit of R of size m gives rise to the repetition code
REP(m). A simple counting shows that R has a single
orbit of size 1 (the central vertical edge) and 2(j − 1)
orbits of size 2 (pairs of qubits located on the diagonals
δ1 and δj+1), whereas all remaining orbits have size 4,
which proves the last statement of the theorem (in the
special case j = k).
Fix a set of qubits O such that each orbit of R contains

exactly one qubit from O. In other words, O is a set of
orbit representatives. We choose O as shown in Fig. 7.
A simple counting shows that |O| = j(j+1)/2. Consider
a codeword y ∈ G and let [y] ∈ {0, 1}|O| be a vector ob-
tained by restricting y onto O. We define the top-level
code as a linear subspace L ⊆ {0, 1}|O| spanned by vec-
tors [y] with y ∈ G. Equivalently, L is spanned by vectors
[δi] with i = 1, . . . , j + 1. A direct inspection shows that
each qubit e ∈ O belongs to exactly two vectors [δi] and
[δk] for some i ̸= k; see Fig. 8 for an example. Thus,
one can identify O with the set of edges of the complete
graph Kj+1, whereas the vectors [δi] can be identified
with “vertex stabilizers” in Kj+1. In other words, the
support of each vector [δi] coincides with the set of edges
incident to some vertex ofKj+1. We conclude that parity
checks of L correspond to closed loops in Kj+1. Thus,
the top-level code coincides with the cycle code Cj+1.
The above proves the theorem in the special case j = k.

Consider now the general case j ̸= k. Let us tile the sur-
face code lattice by t = jk/g2 tiles of size g× g as shown
in Fig. 9. Note that each horizontal edge is fully con-
tained in some tile. Let us say that a vertical edge is a
boundary edge if it overlaps with the boundary of some
adjacent tiles. If one ignores the boundary edges, each
tile contains a single copy of the g × g surface code. For
each tile, define the diagonals δ1, δ2, . . . , δg+1 as above.
Let G be the code space of the Y -code for the full j × k
lattice. Recall that any codeword y ∈ G is fully deter-
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FIG. 9. Partition of the 8 × 12 surface code into 4 × 4 tiles.
Solid red circles: The extended diagonal ∆1 alternating be-
tween δ1 and δ5; see Fig. 6.

mined by its projection ∂y onto the top horizontal row
of edges. Using this property, one can easily verify that
the code space G is spanned by “extended diagonals” ∆i

such that the restriction of ∆i onto the top-left tile co-
incides with δi and ∆i alternates between δi and δg+2−i

in a checkerboard fashion; see Fig. 10. An example of

Δ" =
$"

$"

$"$%&'("

$%&'(" $%&'("

FIG. 10. Extended diagonal ∆i.

the extended diagonal ∆1 is shown in Fig. 9. By defini-
tion, ∆i has no support on the boundary edges, which
implies that the Y -code has a weight-1 parity check for
each boundary edge. Ignoring such weight-1 checks, each
codeword ∆i consists of t copies of the diagonal δi with
some copies being reflected. Considering t copies of each
codeword instead of a single copy is equivalent to replac-
ing the repetition codes REP(1), REP(2), and REP(4)
in the above analysis by REP(t), REP(2t), and REP(4t),
respectively, where t = jk/g2 is the number of tiles.

2. Decoding the cycle code

Here, we consider the cycle code subject to random
errors. We give a polynomial-time decoding algorithm
that achieves the error threshold of 50%. Fix some
integer m ≥ 3 and consider the cycle code Cm de-
fined in Sec. III B 1. Recall that Cm has length n =
m(m−1)/2. We consider independent and identically dis-
tributed (IID) bit-flip errors such that each bit is flipped
with probability p ∈ [0, 1/2). Define an error bias ϵ > 0
such that

2p(1− p) =
1

2
− ϵ. (4)

Lemma 1 (Cycle code decoder). Let e ∈ {0, 1}n be a
random IID error with a bias ϵ. There exists an algorithm
that takes as input the syndrome of e and outputs a bit
string e′ ∈ {0, 1}n such that

Prob[e′ = e] ≥ 1− 2m2 · exp (−2ϵ2m). (5)

The algorithm has runtime O(m3).

Proof. Recall that the cycle code Cm is defined on the
complete graph with m vertices such that each bit of Cm
is located on some edge (i, j) of the graph. Let ei,j be
the error bit associated with an edge (i, j). We begin
by giving a subroutine that identifies a single error bit
ei,j . Without loss of generality, consider the edge (1, 2).
This edge is contained in m − 2 triangles that give rise
to syndrome bits

s3 = e1,2 ⊕ e2,3 ⊕ e3,1,

s4 = e1,2 ⊕ e2,4 ⊕ e4,1,

· · ·
sm = e1,2 ⊕ e2,m ⊕ em,1. (6)

Since errors on different edges of each triangle are in-
dependent, the conditional probability distributions of
syndromes sj for a given error bit e1,2 are

Prob[sj = 1|e1,2 = 0] =
1

2
− ϵ,

Prob[sj = 0|e1,2 = 0] =
1

2
+ ϵ,

Prob[sj = 1|e1,2 = 1] =
1

2
+ ϵ,

Prob[sj = 0|e1,2 = 1] =
1

2
− ϵ.

Furthermore, since different triangles in Eq. (6) intersect
only on the edge (1, 2), we have

Prob[s3, . . . , sm|e1,2] =
m∏
j=3

Prob[sj |e1,2]. (7)

This equation is an IID distribution of m− 2 bits which
is ϵ biased toward e1,2. Hoeffding’s inequality gives

Prob[s3 + . . .+ sm ≥ m/2|e1,2 = 0] ≤ 4 exp (−2ϵ2m)

and

Prob[s3 + . . .+ sm ≤ m/2|e1,2 = 1] ≤ 4 exp (−2ϵ2m).

The desired subroutine outputs e1,2 = 0 if s3 + . . . +
sm ≤ m/2 and e1,2 = 1 otherwise. Clearly, the above
calculations take time O(m).
The full decoding algorithm applies the above subrou-

tine independently to each edge of the graph learning
error bits one by one. By the union bound, such an al-
gorithm misidentifies the error with a probability of at
most 2m2 exp (−2ϵ2m) since the complete graph Km has
m(m− 1)/2 edges. The overall runtime of the algorithm
is O(m3).
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Note that the decoding algorithm of Lemma 1 can
be viewed as a single round of the standard belief-
propagation algorithm, which is commonly used to de-
code classical low-density parity check (LDPC) codes.
Also recall that the cycle code Cm has length n ∼ m2/2.
Thus, the probability of a logical error in Eq. (5) decays
exponentially with

√
n [this scaling is unavoidable, since

the cycle code Cm has distance O(m)]. As a consequence,
the proposed decoder performs very poorly in the small-
bias regime. For example, reducing the error rate from
49% to 1% requires code length n ≈ 1017 [here, we use
Eq. (5) as a rough estimate of the logical error proba-
bility]. In contrast, the logical error probability of the
repetition code REP(n) decays exponentially with n.

C. Threshold of the standard surface code with
pure Y noise

The standard surface code with pure Y noise is equiv-
alent to a concatenation of two classical codes, as shown
above, and both of these classical codes have thresholds
of 50%. These results lead directly to the fact that the
threshold of the surface code with pure Y noise is 50%.
Indeed, let us employ the level-by-level decoding strat-
egy such that the bottom-level repetition codes are de-
coded first. Assume that the pure Y noise has error rate
p < 1/2. Then, the jth repetition code makes a logical
error with probability pj ≤ p < 1/2. The effective error
model for the top-level cycle code is a product of sym-
metric binary channels with error rates p1, . . . , pm ≤ p,
where m = g(g + 1)/2 is the length of the cycle code.
One can easily verify that the decoder of Lemma 1 cor-
rects such a random error with a probability given by
Eqs. (4) and (5). Finally, Theorem 1 implies that each
parity check of the repetition or the cycle code is a linear
combination (modulo two) of the plaquette and vertex
parity checks of Eq. (2). The coefficients in this linear
combination can be found by solving a suitable system
of linear equations in time O(n3), which enables an effi-
cient conversion between the surface code syndrome and
the syndromes of the bottom-level and the top-level code.
To conclude, Theorem 1 and Lemma 1 have the following
corollary.

Corollary 1 (Y -threshold). The error-correction thresh-
old for the surface code with pure Y noise is 50%. This
error threshold can be achieved by a polynomial-time de-
coding algorithm.

In Sec. III E, we show that the above corollary also ap-
plies to rotated surface codes, with odd linear dimensions.
A numerical demonstration of the 50% threshold of the
surface code with pure Y noise is given in Sec. IVA.

D. Y-type logical operators of the standard surface
code

The structure of standard surface codes with pure Y
noise, described in Sec. III B, also manifests itself in the
structure and, consequently, the minimum weight and
count of Y -type logical operators, i.e., logical operators
consisting only of Y and identity single-qubit Paulis. In
this section, we give explicit formulas for the minimum
weight and count of Y -type logical operators. Highlight-
ing the cases of coprime and square codes, as well as
comparing the formulas to those for X- and Z-type log-
ical operators, we remark on how the minimum weight
and count of Y -type logical operators contribute to the
performance advantage with pure Y noise and Y -biased
noise seen in Ref. [7] and Sec. VA, for surface codes,
in general, and in Secs. IVA and VB, for coprime and
rotated codes, in particular.

1. Logical operator minimum weight

We show that the minimum-weight Y -type logical op-
erator on standard surface codes is comparatively heavy.
The X-distance dX of a code is the weight of the
minimum-weight X-type logical operator. Clearly, the
minimum-weight X-type logical operator on a j×k code
is a full column of X operators on horizontal edges, and,
hence, dX = j; similarly, dZ = k. It is also clear that
the minimum-weight Y -type logical operator on a square
j×j code is a full diagonal of Y operators, and, hence,
dY = 2j − 1. From the proof of Theorem 1, it is appar-
ent that, in the case of pure Y noise, a j×k surface code
can be viewed as a tiling of jk/g2 copies of a square g×g
code, where g = gcd(j, k). Therefore, the Y -distance of
a j×k surface code is given by the following corollary.

Corollary 2 (Y -distance). For a standard j×k surface
code, the weight of the minimum-weight Y -type logical
operator, and, hence, the distance of the code to pure Y
noise, is

dY =
(2g − 1)jk

g2

where g = gcd(j, k).

As shown in Sec. III E, the Y -distance of the rotated
j×k surface code, with j and k odd, is dY = jk. The
distances to pure noise for various surface code families
are summarized in Table I. We note that, for all code
families, Y -distance exceeds X- or Z-distance, which is
consistent with the increase in error threshold of surface
codes with biased noise seen in Ref. [7] and Sec. VA. Fur-
thermore, we note that the Y -distance of square codes is
dY = O(

√
n) while that of coprime and rotated codes

is dY = O(n), where n is the number of physical qubits.
This feature of near-optimal and optimal Y -distance con-
tributes to the significant improvement in logical failure



9

rate of coprime and rotated codes over square codes with
pure Y noise and Y -biased noise, see Secs. IVA and VB.

TABLE I. Distances to pure noise for j×k surface code
families. (dP refers to the distance to pure P noise, where
P ∈ {X,Y, Z}.)
Code family dX dY dZ
Square j 2j − 1 j
Coprime j jk k
gcd(j, k) = g j (2g − 1)(jk/g2) k
Rotated (j, k odd) k jk j

2. Logical operator count

We show that Y -type logical operators on standard
surface codes are comparatively rare. The number cX of
X-type logical operators is equal to the number of ways
the logical X operator can be deformed by X-type sta-
bilizer generators. The number of X-type stabilizer gen-
erators (i.e., vertices) on a j×k surface code is j(k − 1),
and, hence, cX = 2j(k−1); similarly, cZ = 2(j−1)k. From
the proof of Theorem 1, it is apparent that the g basis
codewords of the Y -code correspond to a single logical op-
erator and a full set of g− 1 linearly independent Y -type
stabilizers of a j×k surface code, where g = gcd(j, k).
Therefore, the number of Y -type logical operators of a
j×k surface code is given by the following corollary.

Corollary 3 (Y -count). For a standard j×k surface
code, the number of Y -type logical operators is

cY = 2g−1

where g = gcd(j, k). The number of Y -type stabilizers is
also cY .

As shown in Sec. III E, the number of Y -type logical
operators on the rotated j×k surface code, with j and k
odd, is cY = 1. The counts of pure noise logical opera-
tors for various surface code families are summarized in
Table II. We note that, for all code families, the number
of logical operators for pure Y noise is much lower than
the number for pure X or Z noise, which is consistent
with the increase in error threshold of surface codes with
biased noise seen in Ref. [7] and Sec. VA. Furthermore,
we note that the number of Y -type logical operators for
square codes is cY = O(2

√
n), while for coprime and ro-

tated codes it is cY = O(1), where n is the number of
physical qubits. This feature, as an extreme example of
the role of entropy in error correction [24], contributes
to the significant improvement in logical failure rate of
coprime and rotated codes over square codes with pure
Y noise and Y -biased noise, see Secs. IVA and VB.

TABLE II. Counts of pure noise logical operators for j×k
surface code families. (cP refers to the number of P -type
logical operators, where P ∈ {X,Y, Z}.)
Code family cX cY cZ

Square 2j
2−j 2j−1 2j

2−j

Coprime 2j(k−1) 1 2(j−1)k

gcd(j, k) = g 2j(k−1) 2g−1 2(j−1)k

Rotated (j, k odd) 2(j−1)(k+1)/2 1 2(j+1)(k−1)/2

E. Rotated surface codes

We can relate the results from the previous subsections
to rotated surface codes as depicted in Fig. 4. In partic-
ular, we show that rotated codes, with odd linear dimen-
sions, have similar features to coprime codes as given
by Corollaries 2 and 3; that is, such rotated codes also
admit a single Y -type logical operator of weight O(n),
where n is the number of physical qubits. Equivalently,
the Y -distance of such rotated codes, like coprime codes,
is dY = O(n); notably, the rotated code is optimal, in
that it achieves dY = n precisely. Rotated surface codes
with even linear dimensions do not share these features,
having distance dY = O(

√
n) with pure Y noise, and

we do not discuss them further. We conclude by show-
ing that the 50% threshold of surface codes with pure Y
noise, given by Corollary 1, also applies to (odd) rotated
codes.
We consider the rotated surface code, with odd linear

dimensions, and two-qubit (four-qubit) stabilizer gener-
ators on the boundary (in the bulk), as illustrated in
Fig. 4. The following theorem shows that this version of
the surface code is nondegenerate and has a distance of
dY = n against pure Y noise.

Theorem 2 (Rotated code Y -logical). For a rotated sur-
face code, with odd linear dimensions, Y ⊗n is the only
nontrivial Y -type logical operator, where n is the number
of physical qubits.

Proof. It is clear that Y ⊗n is a Y -type logical operator.
We show that it is the only nontrivial Y -type operator
that commutes with every stabilizer of the code. Let
A =

⊗
i Y

αi be a Y -type operator. Consider a row of
stabilizer generators (checks) and qubits that are adja-
cent to this row, numbered as shown below:

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

In order for A to commute with check 1 we require
α1 = α2. With the parity of these checks determined, we
then see that, in order for A to commute with check 2,
we need α3 = α4. Continuing along the row, we see that
every pair of qubits i, j in the same column must satisfy
αi = αj . The assumption that the code has odd linear
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dimensions implies that each row and each column of
checks includes a weight-two check, as depicted, ensuring
that the same argument can equally be applied to every
row or column of checks. Therefore, in order for A to
commute with all checks, we require α1 = αj for all j;
i.e., a nontrivial Y -type logical must act as Y on every
qubit.

We note that both the coprime j×k code and the (odd)
rotated j×k code are nondegenerate against pure Y noise
and have Y -distance dY = jk = O(n). However, the ro-
tated code is known to be the optimal layout for surface
codes in terms of minimum distance [8], and this state-
ment is also true in terms of Y -distance. The rotated
code has dY = jk = n, whereas the coprime code has
dY = jk = O(n) but contains n = 2jk − j − k + 1 physi-
cal qubits.

Furthermore, it is clear that the (odd) rotated code
with pure Y noise is equivalent to the repetition code
and, hence, has a threshold of 50%, in accordance with
Corollary 1.

IV. PERFORMANCE OF SURFACE CODES
WITH PURE Y NOISE

In Sec. III, we present our analytical results for surface
codes with pure Y noise, highlighting features that con-
tribute to the ultrahigh threshold results with Y -biased
noise, found in Ref. [7] and improved upon in Sec. VA.
Our analytical results also indicate that coprime and
(odd) rotated codes should achieve lower logical failure
rates than square codes with pure Y noise.
Here, we present our numerical investigation into the

performance of surface codes with pure Y noise. In par-
ticular, we present results for square, coprime, and ro-
tated surface code families, confirming the 50% error
threshold. We also demonstrate a significant reduction in
the logical failure rate for coprime and rotated codes com-
pared with square codes. Specifically, quadratically fewer
physical qubits may be used to achieve a target logical
failure rate by using coprime or rotated codes compared
with square codes.

A. Advantage of coprime and rotated surface codes
with pure Y noise

We investigate the performance of surface codes with
pure Y noise. Besides confirming the 50% threshold for
the surface code, we demonstrate a significant reduction
in logical failure rate for coprime and (odd) rotated sur-
face codes compared to square surface codes such that a
target logical failure rate may be achieved with quadrati-
cally fewer physical qubits using coprime or rotated codes
in place of square codes. That is, we demonstrate that
logical failure rate decays exponentially with Y -distance
but since, in accordance with Corollary 2, the Y -distance

of square codes is O(
√
n) and that of coprime and rotated

codes is O(n), logical failure rate decays quadratically
faster with n for coprime and rotated codes, where n is
the number of physical qubits.

In Fig. 11, we plot logical failure rate f as a function of
physical failure rate p for surface codes belonging to the
following families: square, coprime, and rotated codes.
For coprime and rotated codes, we see clear evidence of
an error threshold at pc = 50%, consistent with Corol-
lary 1. For square codes, the data are consistent with a
threshold of pc = 50%, but the evidence is less definitive.
Within a code family, it is expected that smaller codes
will perform worse than larger codes below threshold.
However, comparing the performance of smaller coprime
and rotated codes to square codes, we see a significant
improvement in logical failure rate across the full range
of physical error probabilities. For example, the 21×21
rotated code, with n = 441, and the 20×21 coprime code,
with n = 800, both clearly outperform the 21×21 square
code, with n = 841. This result can be seen as a qualita-
tive demonstration of the effect of the features of surface
codes with pure Y noise identified in Sec. III.

In Fig. 12, we plot logical failure rate f as a function
of code distance dY to pure Y noise at physical error
probabilities p at and below the threshold pc = 50%
for surface codes belonging to the following families:
square, coprime, and rotated codes. For each code fam-
ily, we see an exponential decay of the logical failure rate
f ∼ exp(−αdY ), where α is a function of (pc − p), which
is consistent with the threshold pc = 50% predicted by
Corollary 1. Considering j×k surface codes, according
to Corollary 2, dY = 2j − 1 for square codes, dY = jk
for coprime codes, and dY = j2 for rotated codes. That
is, dY = O(

√
n) for square codes, and dY = O(n) for

coprime and rotated codes. As a result, based on the
observed exponential decay, quadratically fewer physical
qubits are required to achieve a target logical failure rate
for a given physical error rate by using coprime or rotated
codes in place of square codes.

To investigate the performance of different families of
surface codes with pure Y noise, we sample the logical
failure rate across a full range of physical error probabili-
ties for square, coprime, and rotated codes. For each code
family, we use an exact maximum-likelihood decoder. For
square and coprime codes, we use the Y -decoder, defined
in Appendix B, to avoid the limitations of an approxi-
mate [7] or nonoptimal (see Sec. III B) decoder. For ro-
tated codes, we use the tensor-network decoder, defined
in Sec. VI, which is exact for pure Y noise. We use code
sizes {5×5, 9×9, 13×13, 17×17, 21×21} for square and
rotated codes and {4×5, 8×9, 12×13, 16×17, 20×21} for
coprime codes and 60 000 runs per code size and phys-
ical error probability. In our decoder implementations,
we use the Python language with SciPy and NumPy li-
braries [25, 26] for fast linear algebra and the mathmp
library [27] for arbitrary-precision floating-point arith-
metic.
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FIG. 11. Logical failure rate f as a function of physical error probability p for surface code families: square, coprime, and
rotated, subject to pure Y noise. Data points are sample means over 60 000 runs using exact maximum-likelihood decoding.
Dotted lines connect successive data points for a given code size.
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FIG. 12. Exponential decay of the logical failure rate f with respect to code distance dY to pure Y noise in the regime of
physical error probability p at and below the error threshold for surface code families: square, coprime, and rotated, subject to
pure Y noise. Data points are sample means over 60 000 runs using exact maximum-likelihood decoding. Dotted lines indicate
a least-squares fit to data for a given p, and error bars indicate one standard deviation.

V. PERFORMANCE OF SURFACE CODES
WITH BIASED NOISE

Our analytical results (see Sec. III), highlight features
of surface codes with pure Y noise that contribute to
ultrahigh thresholds with Y -biased noise (see Ref. [7])
and the improvement in logical failure rate achieved by
coprime and rotated surface codes (see Sec. IV).

Here, we present our numerical investigation into the
performance of surface codes with Y -biased noise. In
particular, we improve on the results of Ref. [7], provid-
ing strong evidence that the threshold of the surface code
tracks the hashing bound exactly for all biases. We also
demonstrate that the improvement in logical failure rate
of coprime and rotated codes with pure Y noise persists
with Y -biased noise, such that a smaller coprime or ro-
tated code outperforms a square code for a wide range of
biases.

A. Thresholds of surface codes with biased noise

In previous work [7], we show that the surface code
exhibits ultrahigh thresholds with Y -biased noise (equiv-
alently, Z-biased noise on the modified surface code of
Ref. [7]). The results of Ref. [7] indicate that the thresh-
old error rate of the surface code appears to follow the
hashing bound for low to moderate bias; however, it is
unclear whether the surface code saturates the hashing
bound for all biases.

Here, we improve on the results of Ref. [7], provid-
ing strong evidence that the threshold error rate of
the surface code saturates the hashing bound exactly
for all biases. Our results are summarized in Fig. 1,
in which threshold estimates for a range of biases are
plotted along with the hashing bound. Error bars are
one standard deviation relative to the fitting procedure.
The threshold estimates are very close to the hashing
bound, and any residual differences are likely due to fi-
nite size effects and decoder approximation. We estimate
the following thresholds: 18.8(2)%, 19.4(1)%, 22.3(1)%,



12

0.5
(0.189)

(24)

1
(0.194)

(32)

3
(0.222)

(48)

10
(0.278)

(56)

30
(0.335)

(56)

100
(0.39)

(56)

300
(0.428)

(48)

1000
(0.456)

(32)

0

0.01

0.02

0.03

0.04

0.05

0.06

Bias: η, (Error probability: p), (Max bond dimension: χmax)

f χ
−
f χ

m
a
x

χ = 8

χ = 16

χ = 24

χ = 32

χ = 40

χ = 48

χ = 56

FIG. 13. Decoder convergence for the rotated 33×33 surface
code, represented by shifted logical failure rate fχ − fχmax ,
as a function of χ at a physical error probability p near the
threshold for the given bias η . Each data point corresponds
to 30 000 runs with identical errors generated across all χ for
a given bias.

28.1(2)%, 33.9(2)%, 39.2(1)%, 42.9(2)%, and 45.4(2)%,
with η = 0.5 (standard depolarizing noise), 1, 3, 10,
30, 100, 300, and 1000, respectively. The corresponding
hashing bound values are 18.9%, 19.4%, 22.2%, 27.8%,
33.5%, 39.0%, 42.8%, and 45.6%, respectively.

These thresholds are all achieved using a particular
tensor-network decoder. The tensor-network decoder of
Ref. [9], used in Ref. [7], is an approximate maximum-
likelihood decoder tuned via a parameter χ, allowing a
trade-off between accuracy and computational cost. In
Ref. [7], we use χ = 48 to keep the simulations tractable,
but we find the decoder is not completely converged in
the intermediate- to high-bias regime. Here, we improve
on these results by using a tensor-network decoder, de-
fined in Sec. VI, that adapts the decoder of Ref. [9] to
rotated codes and achieves a much stronger convergence
with biased noise. The convergence of the decoder with
bias is summarized in Fig. 13, which shows an estimate of
the logical failure rate for the rotated 33×33 surface code
near threshold as a function of χ for a range of biases. For
each bias, the shift in logical failure rate, between the two
largest χ shown, is less than half a standard deviation,
assuming a binomial distribution.

Our method to numerically estimate the threshold of
the surface code with biased noise follows the general
approach taken in Ref. [7], with the key difference that
we use the tensor-network decoder adapted to rotated
codes (see Sec. VI) and choose χ such that the decoder
more strongly converges. We give a brief summary of
the approach here and refer the reader to Ref. [7] for
full details. We use rotated surface codes of sizes 21×21,
25×25, 29×29, and 33×33. We estimate the threshold for
biases η = 0.5, 1, 3, 10, 30, 100, 300, and 1000, where η =
pY /(pX + pZ) and pX = pZ (see Sec. II); we use decoder
approximation parameter χ = 16, 24, 40, 48, 48, 48, 40,
and 24, respectively, to achieve convergence to within

less than half a standard deviation. We run 30 000 simu-
lations per code size and physical error probability. As in
Ref. [7], we use the critical exponent method of Ref. [28]
to obtain threshold estimates with jackknife resampling
over the code distances to determine error bounds.

B. Advantage of coprime and rotated surface codes
with biased noise

In Sec. IVA, we give a demonstration that coprime and
rotated surface codes outperform square surface codes
with pure Y noise in terms of logical failure rate. It is
natural to ask if coprime and rotated codes also outper-
form square codes with Y -biased noise, i.e., when X and
Z errors may also occur. We demonstrate that a signifi-
cant reduction in logical failure rate against biased noise
can be achieved using a rotated j×j code, containing
n = j2 physical qubits, compared to a square j×j code,
containing n = 2j2 − 2j + 1 physical qubits.
Our results are summarized in Fig. 2, where we com-

pare the rotated 9×9 code, containing 81 physical qubits,
to the square 9×9 code, containing 145 physical qubits.
With standard depolarizing noise, i.e., η = 0.5, and with
a low bias, e.g. η = 10 (where Y errors are 10 times more
likely than both X and Z), we see similar performance
for the rotated and square codes. In the limit of pure
Y noise, we see the very large improvement, across the
full range of physical error probabilities, that is already
demonstrated in Sec. IVA. Most interestingly, the im-
provement remains large through the intermediate-bias
regime, η = 100, over a wide range of physical error prob-
abilities, indicating that the advantage of rotated codes
over square codes persists with modest noise biases. We
note that qualitatively similar results are observed when
comparing the coprime 7×8 code to the square 8×8 code
(not shown here).

The advantage of rotated codes with biased noise can
be explained in terms of the features of surface codes
with Y noise identified in Sec. III. The rotated 9×9 code
has the same X- and Z-distance (dX = dZ = 9) as the
square 9×9 code. However, the rotated code is much less
sensitive to Y noise, having a much larger Y -distance
(dY = 81) than the square code (dY = 17) and having
only one Y -type logical operator (cY = 1) compared to
many more such operators (cY = 28 = 256) on the square
code. Therefore, for sufficient bias, we expect rotated
j×j codes to outperform square j×j codes, despite con-
taining approximately half the number of physical qubits.
Also, for a given bias, we expect the relative advantage
to increase with code size, as the Y -sensitivity of the ro-
tated code decreases faster than the X- or Z-sensitivity,
until low-rate errors become the dominant source of logi-
cal failure, at which point high-rate errors are effectively
suppressed.

To compare the performance of rotated and square
codes with Y -biased noise, we sample the logical fail-
ure rate across a full range of physical error probabilities



13

for the square 9×9 code and the rotated 9×9 code with
noise biases η ∈ {0.5, 10, 100, 1000, 10 000,∞}. Sam-
ple means are taken over 30 000 and 1 200 000 runs per
bias and physical error probability for the square and
rotated codes, respectively. Since the noise is biased,
we cannot use the Y -decoder (see Appendix B) for ex-
act maximum-likelihood decoding. Instead, we use the
tensor-network decoder of Ref. [9] for square codes and
the tensor-network decoder of Sec. VI for rotated codes,
both of which approximate maximum-likelihood decod-
ing. Both decoders are tuned via an approximation pa-
rameter χ, which controls the trade-off between efficiency
and convergence. As explained in Sec. VI, the decoder
adapted to rotated codes converges much more strongly
with biased noise. We choose χ = 48 for the square code
decoder and χ = 8 for the rotated code decoder, such that
both decoders converge, at the most challenging bias of
η = 100, to within less than half a standard deviation,
relative to χ+ 8, assuming a binomial distribution. The
use of relatively small codes ensures significant logical
failure rates at low physical error probabilities and keeps
computational requirements to a reasonable level.

VI. IMPROVED TENSOR-NETWORK
DECODING OF ROTATED CODES WITH

BIASED NOISE

In this section, we describe how tensor-network decod-
ing of the surface code under biased noise can be im-
proved using the rotated surface code layout. We show
that the rotated layout allows us to remove certain corre-
lations present in the tensor network used for maximum-
likelihood decoding [9], allowing efficient and optimal de-
coding for pure Y noise. The removal of such correlations
greatly improves the efficiency of the decoder in the case
of noise strongly biased toward Y , but with a small prob-
ability of X and Z errors, a situation previously shown to
be challenging using the standard layout [7]. Through-
out this section, we refer to surface codes oriented as in
Fig. 4(b), where shaded and blank faces correspond to
X- and Z-type checks, respectively.
We briefly describe the approximate maximum-

likelihood decoder proposed by Bravyi, Suchara, and
Vargo in Ref. [9]. Maximum-likelihood decoding for
stochastic Pauli noise chooses the correction that has the
highest probability of successfully correcting the error
given an error syndrome, accounting for all errors con-
sistent with that syndrome. If performed exactly it is,
by definition, optimal.

The maximum-likelihood decoding algorithm in
Ref. [9] is based on mapping coset probabilities to tensor-
network contractions. The probability of a coset for an
error f is given by

π(fG) =
∑
α,β

T (α;β), (8)

where T (α;β) is defined as the probability of the Pauli er-

=

FIG. 14. (a) Tensor network representing a coset probability
for a rotated code. It consists of qubit tensors (circles) and
check tensors (stars). The layout in (a) is obtained by apply-
ing the construction of Ref. [9] to the rotated code without
modification. (b) Splitting a check tensor into multiple check
tensors. This splitting is possible because check tensors take
the value one if all indices are identical and zero otherwise.
(c) A modified tensor network representing a coset probability
where a single cell is outlined by a dashed box. This network
is obtained from (a) by splitting check tensors. (d) Final mod-
ified tensor network obtained by contracting tensors in cells
together to form merged tensors (squares). In the discussion
of the contraction of this tensor network, we imagine rotating
the network anticlockwise by 45◦ and contracting from left to
right. Note that this tensor network is not isotropic: In this
rotated frame, the bond dimension is 2 for horizontal edges
and is 4 for most vertical edges (except on the boundary).

ror f times the stabilizer g(α, β) :=
∏

v(Av)
αv

∏
p(Bp)

βp ,

where αv, βp ∈ {0, 1} and the summation is over
all bit strings α = α1, α2, . . . α(n−1)/2 and β =
β1, β2, . . . β(n−1)/2. Because of the local structure of the
surface code, this summation can be expressed as the con-
traction of a square-lattice tensor network. While there
is some freedom in how the tensor network for a given
coset can be defined on both the standard and rotated
surface code layouts, we illustrate how a particular defi-
nition of the tensor network on the rotated surface code
layout can result in significantly more efficient decoding
of biased noise.

A complete description of the tensor network that leads
to more efficient decoding is provided in Fig. 14. We high-
light the essential features that give rise to the improved
decoding performance. In this layout, every tensor corre-
sponds to a physical qubit, and a horizontal edge between
columns i and i + 1 corresponds to a unique check that
acts nontrivially on qubits in both of these columns. We
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FIG. 15. (a) Check coordinates are assigned to each check
in the rotated layout. (b) The tensor network is defined such
that each horizontal edge corresponds to a specific check. The
α indices correspond to X checks, and the β indices corre-
spond to Z checks, with the subscripts indicating the check
coordinates. Each tensor corresponds to a specific qubit. The
bond dimension of horizontal edges is 2, while the bond di-
mension of the vertical edges is 4.

illustrate the correspondence between checks and tensor-
network edges on a 5× 5 rotated code in Fig. 15.

For certain structured instances of this problem, cor-
responding to independent X or Z flips, an efficient algo-
rithm for contracting the network is known [9]. However,
there is no known efficient algorithm for exact contraction
of the network in the case of general local Pauli noise.

In this case, an approximate method for evaluating the
tensor-network contraction is used [9]. In this method,
the leftmost boundary of the tensor network is treated
as a matrix product state (MPS). Columns of the tensor
network, which take the form of matrix product opera-
tors, are successively applied to the MPS until there are
no columns left and the entire lattice is contracted.

An approximation is used to keep this calculation
tractable. After each column is applied, the singular
value decomposition is used to reduce the size of the ten-
sors in the MPS, effectively keeping only the χ largest
Schmidt values for each bipartition of the chain and set-
ting the remainder to zero. Without such a trunca-
tion, the number of parameters describing the tensors
increases exponentially in the number of columns applied
to the MPS. The parameter χ can be controlled indepen-
dently, with larger χ improving accuracy at an increased
computational cost. The overall runtime of the algorithm
is O(nχ3).

Surprisingly, on the rotated code with the tensor net-
work described above, there is no entanglement in the
boundary MPS for pure Y noise. In other words, the
MPS decoder is exact for χ = 1, independent of system
size. This result is in contrast to the standard layout,
where χ ∼ 48 is required for a reasonable approximation
to coset probabilities on a 21× 21 system [7].

As we explain in the following section, this improve-
ment can be attributed to the boundary conditions of the
code and the layout of the tensor network. While exact
decoding of Y noise can also be performed using meth-
ods described in Appendix B, the MPS decoder can be
extended easily to noise that is mostly Y noise but with
nonzero probability of X and Z errors. Our convergence

results (see Sec. VA) show that there is a substantial im-
provement in the performance over the standard method
when applied to this type of noise.
We observe a similar improvement in performance us-

ing the tensor-network decoder described in Ref. [29]
when defined on the rotated layout and with an anal-
ogous tensor-network layout. Exact decoding is achieved
with χ = 4 for pure Y noise, which is not as efficient
as the improved MPS decoder described above but sub-
stantially more efficient than the MPS decoder on the
standard layout.
We remark that, on the standard layout, changing from

a square lattice to coprime does little to improve the per-
formance of the MPS decoder. Since the contraction al-
gorithm proceeds column by column, a 21× 21 (square)
code and a 21 × 22 (coprime) code have an identical
boundary MPS after the first 20 columns are contracted
if the same error is applied to qubits in these columns.
Thus, we expect the error resulting from the truncation
of small singular values during the contraction to be at
least as bad for the 21× 22 code as the 21× 21 code.

A. Boundary entanglement in MPS decoder

We show that the boundary MPS of the rotated code
with the above tensor-network layout is unentangled
in the case of infinite bias. The boundary MPS ap-
pearing in the contraction algorithm is a (generally ap-
proximate) representation of the “boundary state”, ob-
tained by contracting all indices of the network up to
a given column and leaving the right-going indices of
that column uncontracted. More precisely, we define
ψ(αR;βR) to be the contraction of the network up to
the j < L column, with the right-going boundary in-
dices set to αR;βR. The L-qubit boundary state is de-
fined as |ψR⟩ :=

∑
αR;βR ψ(αR;βR)|αR;βR⟩. We illus-

trate such a boundary state in Fig. 16(a). Let Qj be the
set of qubits in columns up to and including column j.
As previously described, each boundary index in αR =
α1,j , α3,j , . . . , αL−2,j and βR = β0,j , β2,j , . . . , βL−1,j cor-
responds to a check acting nontrivially on qubits in
columns j and j+1, where the check subscripts here are
for odd j (for even j, simply add 1 to every row index).
We call checks that act only nontrivially on qubits con-

tained in Qj bulk checks and refer to them using the in-
dices αB ;βB , with superscript B. We refer to a specific
αR;βR as a boundary configuration and a specific αB ;βB

as a bulk configuration. We define G′ ⊆ G to be the set of
stabilizer elements that act nontrivially only on Qj and
g(αB ;βB) ∈ G′ to be the stabilizer element corresponding
to the bulk configuration αB ;βB . We define h(αR;βR) to
be the product of boundary checks corresponding to the
boundary configuration αR;βR whose action is restricted
to qubits in Qj (so the action on qubits in column j+1 is
ignored). The fact that ψ(αR;βR) is calculated by con-
tracting all indices to the left of column j means that
all bulk configurations αB ;βB are summed over, like in
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FIG. 16. (a) A boundary state obtained by contracting the
network up to a given column, and leaving the right-going
indices of that column uncontracted. (b) An example check
and error configuration illustrated for calculating the bound-
ary state for the third column j = 3 of a 5 × 5 code with
rotated layout. A bulk configuration αB ;βB is represented
by the red dots, and a boundary configuration αR;βR is rep-
resented by the blue dots (where a dot on a check indicates
that the check variable αi,k or βi,k is 1). An error f ′ is rep-
resented by green letters. Note that for this calculation we
consider only the action of the checks and error on qubits in
the first three columns Q3, inside the dashed box. So the
action on the boundary checks on qubits outside the box is
ignored. The quantity T ′(αB ;βB ;αR;βR) is the probability
of the product of all dotted checks and the error f ′ in the
dashed box. In the example configuration depicted above,
this product contains four X, six Y and two Z errors, giv-
ing T ′(αB ;βB ;αR;βR) = p4Xp6Y p2Zp

3
I . In order to calculate

the boundary state, all possible configurations of bulk checks
must be summed over. In the special case of pure Y noise,
where pX = pZ = 0, only at most one term in this sum is
nonzero for any boundary configuration.

Eq. (8) but restricted to checks in the first j columns. So
we can write

ψ(αR;βR) = π′(f ′G′) =
∑

αB ,βB

T ′(αB ;βB ;αR;βR), (9)

where π′, f ′, and T ′, respectively, correspond to ver-
sions of π, f , and T that are restricted to Qj . Specif-
ically, f ′ is the Pauli error f restricted to Qj , and
T ′(αB ;βB ;αR;βR) is the probability of the Pauli error
f ′g(αB ;βB)h(αR;βR) on qubits in Qj . We illustrate an
example error f ′, bulk configuration αB ;βB , and bound-
ary configuration αR;βR in Fig. 16. The coset prob-
ability π′ is likewise restricted to qubits Qj , with the
boundary checks fixed.

In the case of pure Y noise, the summation on the
right-hand side of Eq. (9) simplifies dramatically. In fact,
for any given choice of boundary variables αR;βR and
error f ′, there is at most one choice of αB and βB such
that T ′(αB ;βB ;αR;βR) is nonzero. So, given αR;βR

and f ′, either ψ(αR;βR) is zero or there exists a unique
αB , βB such that

ψ(αR;βR) = T ′(αB ;βB ;αR;βR). (10)

For a given f ′ and αR, βR, we say that a qubit is
“satisfied” for a given check configuration αB ;βB if

FIG. 17. All allowed bulk and boundary configurations for Y
noise illustrated for the boundary state for the third column
j = 3 of a 5 × 5 code on the rotated layout for the trivial
coset f ′ = I. The product of the dotted checks must result in
only I and Y errors on Q3 (and no X or Z errors). Blue dots
represent the boundary configuration, while red dots repre-
sent the corresponding bulk configuration. Blue dots must
be connected to a two-qubit check on the left boundary by
a string of red dots. The fact that these strings never over-
lap and are absorbed at the left boundary implies that the
boundary variables are uncorrelated, and, therefore, there is
no entanglement in the boundary state.

f ′g(αB ;βB)h(αR;βR) acts on every qubit as either I
or Y and not X or Z. For pure Y noise, in order for
T ′(αB ;βB , αR;βR) to be nonzero, all qubits in Qj must
be satisfied. We can solve for a bulk configuration αB ;βB

that satisfies all qubits, if one exists, by fixing check vari-
ables to satisfy qubits one at a time, starting from the
qubit adjacent to the two-qubit boundary check in col-
umn j. There is only one bulk check adjacent to this
qubit; therefore, only one choice for the corresponding
check variable will satisfy that qubit. This fixes the first
bulk check. We then proceed down this column to fix ev-
ery check variable in the same manner. With the check
configuration in column j determined, we then solve for
checks in columns j − 1, j − 2, etc., in the same way un-
til all check variables are determined, thereby solving for
the bulk configuration αB ;βB .

Note that, for certain f ′ and αR;βR, there may be no
configuration of bulk checks that will satisfy all qubits,
which implies that the f ′ and αR;βR are not compatible
with pure Y noise, i.e., ψ(αR, βR) = 0. In fact, only a
few special boundary configurations are compatible with
pure Y noise. We describe the boundary configurations
αR;βR that are compatible with a given f , starting with
the case of the trivial coset f = I. We show that the
allowed bulk and boundary configurations consist of hor-
izontal strings which terminate at two-qubit X checks on
the left code boundary, as shown in Fig. 17. Other cosets
(with f ̸= I) follow straightforwardly from this.

We start from the left-hand side of the code and try
to find bulk configurations that satisfy all qubits. We
work our way up the column, finding relations between
checks. We use the convention that qubit (i, k) refers to
the qubit on the bottom-left vertex of the check (face)
with coordinates (i, k), as in Fig. 15. First, in order to
satisfy qubit (1, 1), we require α1,0 = β1,1. With the par-
ity of these checks fixed, in order to satisfy qubit (2, 1),
we need α1,1 = 0. Then, to satisfy qubit (3, 1) we re-
quire α3,0 = β3,1. Continuing up the column, we see
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that αi,0 = βi,1 for i odd and αi,1 = 0 for i even, and
the two-qubit Z check at the end of the column satis-
fies β(L+1)/2,1 = 0. We can then solve for checks in the
next column, finding αi,2 = βi,1 for odd i, βi,2 = 0 for
even i, and β2,0 = 0 for the two-qubit check on the lower
boundary.

Proceeding in this manner, we can solve for all the
checks up to any given column. For the trivial coset, the
bulk and boundary configurations satisfy the following:

• All check variables in a given row must be take the
same value.

• Check variables in rows terminated by a two-qubit
X check (odd rows) may take values 0 or 1. The
remaining checks must take the value 0.

We can easily calculate the probability of each satisfy-
ing check configuration. First, the trivial configuration
αR;βR = 0; 0 corresponding to the bulk configuration
αB ;βB = 0; 0, i.e., with all bulk and boundary check
variables set to 0, has probability (pI)

jL. Flipping any
odd boundary check flips the corresponding row of checks
in the bulk and introduces 2j Y errors, changing the
probability by a factor of (pY /pI)

2j . The fact that the
weight introduced by flipping any row does not depend
on which other rows are flipped implies that the bound-
ary variables are independent and |ψR⟩ is a product state
which can be explicitly written as

|ψR⟩ = |0⟩end
⊗
k even

|0⟩k
⊗
l odd

|θ⟩l, (11)

where |θ⟩ = p2jI |0⟩+ p2jY |1⟩ and |0⟩end corresponds to the
two-qubit Z-check at the end of the column. Since the
boundary state for the trivial coset f ′ = I is completely
unentangled, the tensor network corresponding to this
coset can be contracted exactly with χ = 1.

The case of a nontrivial coset with f ′ ̸= I is analogous
to the case of a trivial coset. Starting from any satisfy-
ing bulk and boundary configuration, we obtain all other
satisfying bulk and boundary configurations by flipping
odd rows of checks, as in the trivial coset. If we assume
there exist satisfying bulk and boundary configurations

αR′
;βR′

and αB ′
;βB ′

, respectively, for a given error f ′,
the boundary state can be explicitly written as

|ψR⟩ = |βR′
end⟩

⊗
k even

|γR′
k⟩

⊗
l odd

|θ(l)⟩l, (12)

where |θ(l)⟩ = p
N(l)
Y p

2j−N(l)
I |0⟩+p2j−N(l)

Y p
N(l)
I |1⟩, N(l) is

the number of qubits on which Y is applied in the rows
adjacent to the lth row of checks when the boundary

variable for row l is 0 and where γR
′
= αR′

for odd j

and γR
′
= βR′

for even j, and βR
end

′
corresponds to the

two-qubit check at the end of the column.
Therefore, using the tensor-network layout described

above, any coset can be calculated exactly using the MPS
decoder with χ = 1, which is a particular property of the

FIG. 18. Some examples of boundary and bulk configurations
for the standard layout of the surface code with three-qubit
checks on the boundary for the trivial coset f ′ = I. The
lineons travel in straight lines through the four-qubit bulk
checks, but the three-qubit boundary checks have the effect
of reflecting them by 90◦, such that they emerge on the right
boundary on the exact opposite side. Therefore, each bound-
ary variable is perfectly correlated with the boundary variable
on the exact opposite side. Separate lineons can also cross
paths, resulting in a cancellation of the bulk variables. Also,
for neighboring pairs of lineons, Y on the qubits shared be-
tween them cancel. These all result in correlations between
the boundary variables and, therefore, entanglement in the
boundary MPS.

physical boundary conditions of the code. In this case
described above, starting from a vacuum (with all checks
unflipped), flipping a boundary check results in a line of
checks being flipped through the bulk, which is absorbed
by a two-qubit check on the boundary. We call such a
line of flipped check variables a “lineon”.

While we can define the tensor network analogously
for the standard surface code layout, the boundary state
does not have the same product state form. We find
that the three-qubit boundary checks result in long-
range correlations in the boundary state, which is be-
cause the three-qubit checks reflect lineons rather than
absorb them, as illustrated in Fig. 18. This result means
that separated pairs of boundary checks must be flipped
together. Also, when distinct lineons travel next to each
other or cross, there is a cancellation of Y errors. The
consequence of this cancellation is that the probability of
a particular lineon depends on whether other lineons are
present, which results in correlations between boundary
variables and entanglement in the boundary state. The
rotated layout with two-qubit checks does not suffer from
these problems. The lineons never cross; they are always
separated by a row and are absorbed at the boundary.

To summarize this section, we show that the MPS de-
coder adapted to the rotated layout is exact with χ = 1
for pure Y noise. This result is due to the fact that
many correlations in the tensor network are eliminated
in this case, making contraction of the tensor network
much more efficient. This decoder can also take into
account finite bias (i.e., nonzero pX and pZ), and the im-
provement in efficiency also carries over to this case, as
the numerical results of Sec. VA show.
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VII. DISCUSSION

In this paper, we describe the structure of the sur-
face code with pure Y noise and show that this structure
implies a 50% error threshold and a significant perfor-
mance advantage in terms of logical failure rate with co-
prime and rotated codes compared to square codes. Fur-
thermore, we provide numerics confirming our analytical
results with pure Y noise and demonstrating the perfor-
mance advantage of rotated codes with Y -biased noise.
It is important to note that our results apply equally
to pure Z noise, i.e., dephasing noise, and the Z-biased
noise prevalent in many quantum architectures, through
the simple modification [7] of the surface code that ex-
changes the roles of Z and Y operators in stabilizer and
logical operator definitions. We, therefore, identify and
characterize the features of surface codes that contribute
to their ultrahigh thresholds with Z-biased noise and to
the improvements in logical failure rate with coprime and
rotated codes demonstrated in this paper.

In the limit of pure Y noise, we show that the standard
surface code is equivalent to a concatenation of classi-
cal codes: a single top-level cycle code and a number of
bottom-level repetition codes. We show that this implies
the surface code with pure Y noise has a threshold of
50% and, for j×k surface codes with small g = gcd(j, k),
the more effective repetition code dominates, leading to
a reduction in logical failure rate. In terms of logical op-
erators, we show that Y -type logical operators are rarer
and heavier than X- or Z-type equivalents, and coprime
codes, in particular, have only one Y -type logical oper-
ator, and its weight is O(n). We also show that rotated
codes, with odd linear dimensions, are closely related to
coprime codes, admitting a single Y -type logical operator
of optimal weight n.

We confirm, numerically, the 50% error threshold of
the surface code with pure Y noise and demonstrate that
coprime and rotated codes with pure Y noise significantly
outperform similar-sized square codes in terms of logical
failure rates such that a target logical failure rate may
be achieved with quadratically fewer physical qubits us-
ing coprime and rotated codes. Furthermore, we demon-
strate that this advantage persists with Y -biased noise.
In particular, we find that a smaller rotated code, with
approximately half the number of physical qubits, out-
performs a square code, over a wide range of physical
error probabilities, for biases as low as η = 100, where
Y errors are 100 times more likely that X or Z errors.
We argue that, for a given bias, the relative advantage
of coprime and rotated codes over square codes increases
with code size, until low-rate errors become the dominant
source of logical errors and high-rate errors are effectively
suppressed.

Leveraging features of the structure of rotated codes
with pure Y noise, we define a tensor-network decoder
that achieves exact maximum-likelihood decoding with
pure Y noise and converges much more strongly with Y -
biased noise than the decoder of Ref. [9], from which it

is adapted. With this decoder, we are able to improve
upon the results of Ref. [7] and provide strong evidence
that the threshold error rate of surface codes tracks the
hashing bound exactly for all biases, addressing an open
question from Ref. [7]. Saturating this bound is a re-
markable result for a practical topological code limited
to local stabilizers.

Although our analytical results focus on features of
the surface code with pure Y noise, it is interesting to
put our observations of the performance of surface codes
with biased noise in the context of other proposals to
adapt quantum codes to biased noise [4, 11–22]. Sev-
eral proposals have been made for constructing asym-
metric quantum codes for biased noise from classical
codes [11–14] (see Ref. [13] for an extensive list of ref-
erences), but of particular interest here are approaches
that can be applied to topological codes. A significant
increase in threshold with biased noise has been demon-
strated by concatenating repetition codes at the bottom
level with another, possibly topological, code at the top
level [4, 15, 16]; interestingly, this construction mirrors
the structure we find to be inherent to the surface code.
Performance improvements with biased noise have also
been demonstrated by modifying the size and shape of
stabilizers in Bacon-Shor codes [17–19] and surface and
compass codes [20], by randomizing the lattice of the
toric code [21] or by concatenating a small Z-error detec-
tion code to the surface code [22]. These approaches are
distinct from the use of coprime or rotated codes (with
the modification of Ref. [7]), which maintain the size and
locality of surface code stabilizer generators, and so they
could potentially be combined to yield further perfor-
mance improvements.

Looking forward, the identified features of surface
codes and the insights behind them suggest several inter-
esting avenues of research. For the surface code, specifi-
cally, different geometries may be more robust to logical
errors than coprime and rotated codes in the high-bias
regime, where a few well-placed X and Z errors can com-
bine with strings of Y errors to produce more common,
lower-weight logical operators. Similarly, certain geome-
tries of surface code used to encode multiple qubits [30]
may or may not maintain the high performance of simple
surface codes with biased noise. For topological codes,
more generally, one can ask which codes exhibit an in-
crease in performance with biased noise and what are
the family traits of such codes; we have seen, for exam-
ple, that the standard triangular 6.6.6 color code does
not exhibit an increase in performance. (Although this
color code is equivalent, in some sense, to a folded sur-
face code [31], the mapping that relates the two does not
preserve the biased noise model.)

Finally, although this paper focuses on features of sur-
face codes with Y or Y -biased noise rather than the issue
of fault-tolerant decoding, our numerical results motivate
the search for fast fault-tolerant decoders for the surface
code with biased noise. The highly significant question
of whether the high performance of surface codes with



18

biased noise can be preserved in the context of fault-
tolerant quantum computing, is addressed in a forthcom-
ing paper [32], where a fast but suboptimal decoder for
tailored surface codes achieves fault-tolerant thresholds
in excess of 5% with biased noise. Investigating the op-
timal fault-tolerant thresholds with biased noise and the
performance well below threshold remain important av-
enues of research.
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[21] B. Röthlisberger, J. R. Wootton, R. M. Heath, J. K.
Pachos, and D. Loss, Incoherent dynamics in the toric
code subject to disorder, Phys. Rev. A 85, 022313 (2012),
arXiv:1112.1613.

[22] X. Xu, Q. Zhao, X. Yuan, and S. C. Benjamin, A high
threshold code for modular hardware with asymmetric
noise, (2018), arXiv:1812.01505.

[23] P. Webster, S. D. Bartlett, and D. Poulin, Reducing the
overhead for quantum computation when noise is biased,
Phys. Rev. A 92, 062309 (2015), arXiv:1509.05032.

[24] M. E. Beverland, B. J. Brown, M. J. Kastoryano, and
Q. Marolleau, The role of entropy in topological quantum
error correction, J. Stat. Mech.: Theory Exp. 2019 (7),
073404, arXiv:1812.05117.

[25] E. Jones, T. Oliphant, P. Peterson, et al., SciPy:
Open source scientific tools for Python (2001–),
https://www.scipy.org/.

[26] T. E. Oliphant, A guide to NumPy , Vol. 1 (2006)
https://www.numpy.org/.

[27] F. Johansson et al., mpmath: a Python library for
arbitrary-precision floating-point arithmetic (version 1.0)

https://arxiv.org/abs/quant-ph/9811052
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1103/RevModPhys.87.307
https://arxiv.org/abs/1302.3428
https://doi.org/10.1063/1.1499754
https://arxiv.org/abs/quant-ph/0110143
https://doi.org/10.1088/1367-2630/11/1/013061
https://arxiv.org/abs/0806.0383
https://doi.org/10.1126/science.1217692
https://arxiv.org/abs/1202.1828
https://doi.org/10.1126/science.1253742
https://arxiv.org/abs/1403.5426
https://doi.org/10.1103/PhysRevLett.120.050505
https://arxiv.org/abs/1708.08474
https://doi.org/10.1103/PhysRevA.76.012305
https://arxiv.org/abs/quant-ph/0703272
https://arxiv.org/abs/quant-ph/0703272
https://doi.org/10.1103/PhysRevA.90.032326
https://arxiv.org/abs/1405.4883
https://doi.org/10.1103/PhysRevLett.97.180501
https://arxiv.org/abs/quant-ph/0605138
https://doi.org/10.1103/PhysRevA.75.032345
https://arxiv.org/abs/quant-ph/0606107
https://arxiv.org/abs/quant-ph/0606107
https://doi.org/10.1098/rspa.2008.0439
https://doi.org/10.1007/s10773-014-2031-y
https://doi.org/10.1103/PhysRevApplied.8.064004
https://arxiv.org/abs/1703.08179
https://doi.org/10.1103/PhysRevA.78.052331
https://doi.org/10.1103/PhysRevA.78.052331
https://arxiv.org/abs/0710.1301
https://doi.org/10.1103/PhysRevA.88.060301
https://arxiv.org/abs/1308.4776
https://doi.org/10.1103/PhysRevA.77.062335
https://arxiv.org/abs/0708.3969
https://arxiv.org/abs/1209.0794
https://doi.org/10.1103/PhysRevA.87.032310
https://doi.org/10.1103/PhysRevA.87.032310
https://arxiv.org/abs/1211.1400
https://doi.org/10.1103/PhysRevX.9.021041
https://arxiv.org/abs/1809.01193
https://doi.org/10.1103/PhysRevA.85.022313
https://arxiv.org/abs/1112.1613
https://arxiv.org/abs/1812.01505
https://arxiv.org/abs/1812.01505
https://doi.org/10.1103/PhysRevA.92.062309
https://arxiv.org/abs/1509.05032
https://doi.org/10.1088/1742-5468/ab25de
https://doi.org/10.1088/1742-5468/ab25de
https://arxiv.org/abs/1812.05117
https://www.scipy.org/
https://www.scipy.org/
https://www.numpy.org/
http://mpmath.org/
http://mpmath.org/


19

(2017), http://mpmath.org/.
[28] C. Wang, J. Harrington, and J. Preskill, Confinement-

Higgs transition in a disordered gauge theory and the ac-
curacy threshold for quantum memory, Annals of Physics
303, 31 (2003), quant-ph/0207088.

[29] A. S. Darmawan and D. Poulin, Linear-time general de-
coding algorithm for the surface code, Phys. Rev. E 97,
051302 (2018), arXiv:1801.01879.

[30] N. Delfosse, P. Iyer, and D. Poulin, Generalized sur-
face codes and packing of logical qubits, (2016),
arXiv:1606.07116.

[31] A. Kubica, B. Yoshida, and F. Pastawski, Unfold-
ing the color code, New J. Phys. 17, 083026 (2015),
arXiv:1503.02065.

[32] D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and
B. J. Brown, Fault-tolerant thresholds for the surface
code in excess of 5% under biased noise, (2019),
arXiv:1907.02554.

[33] F. Merz and J. T. Chalker, Two-dimensional random-
bond Ising model, free fermions, and the network model,
Phys. Rev. B 65, 054425 (2002), cond-mat/0106023.

[34] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber,
and M. A. Martin-Delgado, Strong resilience of topo-
logical codes to depolarization, Phys. Rev. X 2, 021004
(2012), arXiv:1202.1852.

[35] H. G. Katzgraber, H. Bombin, and M. A. Martin-
Delgado, Error threshold for color codes and random
three-body Ising models, Phys. Rev. Lett. 103, 090501
(2009), arXiv:0902.4845.

Appendix A: Color-code thresholds with biased
noise

We demonstrate that the threshold of the triangular
6.6.6 color code [10] decreases when the noise is biased.
This result is in stark contrast to the surface code, which
exhibits a significant increase in threshold with biased
noise [7]. Our results are summarized in Fig. 19, in which,
we contrast our results for the color code with those for
the surface code, reproduced from Sec. VA. From sta-
tistical physics arguments, the optimal error threshold
for the unmodified surface code with pure Z noise is
estimated to be 10.93(2)% [3, 33], and with depolariz-
ing noise it is estimated to be 18.9(3)% [34]. The color
code has similar error thresholds [34, 35] to the surface
code with pure Z noise and depolarizing noise. Our re-
sults for the color code, using an approximate maximum-
likelihood decoder, reveal a decrease in threshold with
Y -biased noise: 18.7(1)% with standard (η = 0.5) depo-
larizing noise, 13.3(1)% with bias η = 3, 11.4(2)% with
bias η = 10, 10.6(2)% with bias η = 100, and 10.5(2)% in
the limit of pure Y noise. In contrast, our results for the
surface code, from Sec. VA, reveal a significant increase
in threshold with Y -biased noise: 18.8(2)% with standard
(η = 0.5) depolarizing noise, 22.3(1)% with bias η = 3,
28.1(2)% with bias η = 10, 39.2(1)% with bias η = 100,
and the analytically proven 50% threshold in the limit
of pure Y noise; see Sec. III C. Our decoder implementa-
tion and numerics are described below. The features of
surface codes that contribute to their exceptional perfor-

mance with biased noise are discussed in the body of the
paper.
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FIG. 19. Threshold error rate pc as a function of bias η. Red
inverted triangles show threshold estimates for the triangular
6.6.6 color code. For comparison, blue triangles show thresh-
old estimates for the surface code (reproduced from Sec. VA),
with the point at infinite bias, i.e., only Y errors, indicating
the analytically proven 50% threshold. Error bars indicate
one standard deviation relative to the fitting procedure. The
gray line is the hashing bound for the associated Pauli error
channel.

Decoder.— In order to take account of correlations
between X- and Z-type stabilizer syndromes, we imple-
ment a tensor-network approximate maximum-likelihood
decoder for triangular 6.6.6 color codes following the
same principles as the tensor-network decoder of Ref. [9]
used in Ref. [7] for surface codes.
Consider a color code with n physical qubits and m in-

dependent stabilizer generators. Let P denote the group
of n-qubit Pauli operators, let G denote the stabilizer
group, and recall that the centralizer of G is given by
C(G) = {f ∈ P : fg = gf ∀ g ∈ G}. If the re-
sult of measuring the stabilizer generators is given by
syndrome s ∈ {0, 1}m and fs ∈ P is some fixed Pauli
operator with syndrome s then the set fsC(G) of all
Pauli operators with syndrome s is the disjoint union
fsC(G) = fsG ∪ fsXG ∪ fsY G ∪ fsZG, where X, Y and
Z are the logical operators on the encoded qubit.
For a given syndrome s and probability distribu-

tion π on the Pauli group, the maximum-likelihood de-
coder can be implemented by constructing a candidate
recovery operator fs consistent with s and returning
arg maxf π(fG) where f ∈ {fs, fsX, fsY , fsZ} and
π(fG) =

∑
g∈G π(fg).

By analogy with the decoder of Ref. [9] for the surface
code, we define a tensor network whose exact contraction
yields the coset probability π(fG) for the color code. Fig-
ures 20(a) and 20(b) illustrate a distance-5 color code,
whereas Figure 20(c) illustrates a tensor network with
the same layout of qubits and stabilizers. Bonds have di-
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mension 4. Stabilizer tensors are defined such that each
element has a value of 1 if all indices are identical and
a value of 0 otherwise. Qubit tensors are defined such
that each element has the single-qubit probability π of
the product of the restriction of f to that qubit with the
Paulis associated with bond indices where indices map
to Paulis as 0 7→ I, 1 7→ X, 2 7→ Y , and 3 7→ Z. In this
way, all possible combinations of stabilizers are applied
to f , and the exact contraction of such a tensor network
yields the coset probability π(fG).
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FIG. 20. (a) Distance-5 triangular 6.6.6 color code with
logical operators given by a product of Z along the bottom
edge and a product of X along the left edge. (b) Color-code
stabilizers. (c) Tensor network corresponding to the coset
probability of a distance-5 color code; gray disks represent
qubit tensors; white stars represent stabilizer tensors; and
lines represent bonds. (d) Equivalent tensor network as a
square lattice.

The exact contraction of the tensor network is in-
efficient with a runtime exponential in the number of
qubits n. However, by merging neighboring qubit ten-
sors in pairs, the tensor network can be transformed into
a square lattice [see Fig. 20(d)] so that techniques, used
in the decoder of Ref. [9], can be applied to efficiently
approximate the coset probability. The approximation is
controlled by a parameter χ which defines the maximum
bond dimension retained as the tensor network is con-
tracted. We refer the reader to Ref. [9] for full details
of the approximate contraction algorithm. We find that
the performance of the decoder converges well for χ = 36
across all noise biases, see below.

Numerics.— We follow the general approach taken in
Ref. [7]; we give a brief summary here and refer the reader

to Ref. [7] for full details. We use triangular 6.6.6 color
codes of distances d = 7, 11, 15, and 19. We estimate the
threshold for biases η = 0.5, 1, 3, 10, 30, 100, 300, 1000,∞,
where η = pY /(pX +pZ) and pX = pZ , such that η = 0.5
corresponds to standard depolarizing noise and η = ∞
corresponds to pure Y noise (see Sec. II). We approx-
imate maximum-likelihood decoding using the decoder,
described above, with approximation parameter χ = 36.
The decoder converges well (generally better than in
Ref. [7]) across the full range of biases with the weak-
est convergence in the low-bias regime, see Fig. 21. We
run 30 000 simulations per code distance and physical
error probability. As in Ref. [7], we use the critical ex-
ponent method of Ref. [28] to obtain threshold estimates
with jackknife resampling over the code distances to de-
termine error bounds.
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FIG. 21. Decoder convergence for the distance d = 19 tri-
angular 6.6.6 color code, represented by shifted logical failure
rate fχ − f36, as a function of χ at a physical error proba-
bility p near the threshold for the given bias η . Each data
point corresponds to 60 000 runs with identical errors gener-
ated across all χ for a given bias.

Appendix B: Exact optimal Y-decoder

Here, we define the exact optimal decoder for pure
Y noise that we use in our numerical simulations of
Sec. IVA. As mentioned in Sec. III B, it is possible to
decode Y noise on the planar code by treating it as the
concatenation of a cycle code and repetition codes and
decoding level by level. However, while efficient, such
a decoder is not necessarily optimal. Also, as men-
tioned in Sec. III C, the performance of the approxi-
mate maximum-likelihood decoder [9] used in previous
studies [7] is found to saturate with pure Y noise when
tuned for efficiency. Here, we explicitly define an exact
maximum-likelihood decoder for the surface code with
pure Y noise that is efficient for j×k surface code families
with small gcd(j, k), such as coprime codes, and tractable
for moderate-sized square codes.
Consider a surface code with n physical qubits and

m independent vertex and plaquette stabilizer genera-
tors. In the case of pure Y noise, the only possible error
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configurations are Y -type Pauli operators, i.e. operators
consisting only of Y and identity single-qubit Paulis. Let
PY denote the group of n-qubit Y -type Pauli operators,
let GY denote the group of Y -type stabilizers, and de-
fine the centralizer of GY as C(GY ) = {f ∈ PY : fg =
gf ∀ g ∈ GY }. If the result of measuring the vertex
and plaquette stabilizer generators is given by syndrome
s ∈ {0, 1}m and fs ∈ PY is some fixed Y -type Pauli oper-
ator with syndrome s then the set fsC(GY ) of all Y -type
Pauli operators with syndrome s is the disjoint union
fsC(GY ) = fsGY ∪ fsLGY , where L is one of the single
class of logical operators possible with pure Y noise.
For a given syndrome s and probability distribution

π on the Pauli group, the maximum-likelihood decoder
for pure Y noise can be implemented by constructing a
candidate Y -type recovery operator fs consistent with s
and returning arg maxf π(fGY ) where f ∈ {fs, fsL} and
π(fGY ) =

∑
g∈GY

π(fg).
On a j×k surface code, the size of the group of Y -type

stabilizers is |GY | = cY = 2g−1, where g = gcd(j, k); see
Corollary 3. Therefore, for surface codes with small g,
such as coprime codes, the Y -decoder is efficient, pro-
vided that a candidate Y -type recovery operator fs, the
group of Y -type stabilizers GY , and logical operator L
can be constructed efficiently. In the next two subsec-
tions, we describe these constructions.

1. Constructing Y-type stabilizers and logical
operators

The construction of Y -type stabilizers and logical oper-
ators for a j×k code is illustrated in Fig. 22. A minimum-
weight Y -type logical operator is constructed by applying
Y operators along a path starting at the top-left corner of
the lattice and descending diagonally to the right, reflect-
ing at boundaries, until another corner is encountered
from within the lattice. We construct Y -type stabilizers
similarly, starting at each of the next gcd(j, k)−1 qubits
of the top row and reflecting until the path cycles. To-
gether, these stabilizers generate the full group of 2g−1 Y -
type stabilizers, and combine with the minimum-weight
logical operator to give the 2g−1 Y -type logical operators
of the j×k code.

2. Constructing candidate Y-type recovery
operators

The construction of a candidate Y -type recovery op-
erator, consistent with a given syndrome, depends on
whether the code is coprime, square, or neither.

For coprime codes, it is possible to construct an opera-
tor, consisting only of Y and identity single-qubit Paulis,
that anticommutes with any single syndrome location.
We refer to such operators as Y -type destabilizers. Given
a complete syndrome, a candidate Y -type recovery oper-
ator is then simply constructed by taking the product

(a) (b)

(c.i) (c.ii) (c.iii)

FIG. 22. Examples of Y -type stabilizer and logical op-
erator construction by applying Y operators along the in-
dicated path until a corner is encountered or the path cy-
cles. Minimum-weight Y -type logical operators (a) and (b)
for square 4×4 and coprime 3×4 codes, respectively, are con-
structed by starting at the top-left qubit. Generators of the
group of Y -type stabilizers (c) for the square 4×4 code are
constructed by starting at each of the next gcd(j, k) − 1 = 3
qubits of the top row. (For coprime codes, there are no Y -
type stabilizers other than the identity.)

(a) (b) (c) (d)

FIG. 23. Example of Y -type destabilizer construction for a
coprime code. (a) Single syndrome location. (b) A partial re-
covery operator is constructed by applying Y operators, from
below the syndrome location along a diagonal to any bound-
ary, then from that diagonal along perpendicular diagonals,
until the bottom boundary is encountered. (c) Residual recov-
ery operators are constructed by applying Y operators, from
right of each residual boundary syndrome location along a
diagonal away, until a corner is encountered. (d) The desta-
bilizer is a product of partial and residual recovery operators.

of Y -type destabilizers for each syndrome location. One
way to construct Y -type destabilizers for coprime codes
is illustrated in Fig. 23. For a given syndrome location, a
partial recovery operator is constructed by applying seed
Y operators along a path starting directly below the syn-
drome location and descending diagonally to the right
until a boundary is encountered; further Y operators are
applied along paths descending diagonally to the left of
each of these seed Y operators, reflecting at boundaries,
until the bottom boundary is encountered. The partial
recovery operator then anticommutes with the original
syndrome location and residual syndrome locations on



22

(a) (b.i) (b.ii) (c)

FIG. 24. Example of candidate Y -type recovery operator
construction for a square code using partial recovery oper-
ators. (a) Original error and complete syndrome. (b) Par-
tial recovery operators with residual boundary syndrome lo-
cations. (c) The candidate recovery operator is the product
of all partial recovery operators, since residual boundary syn-
drome locations cancel in the case of square codes.

the bottom boundary. A residual recovery operator is
constructed for each residual syndrome location by ap-
plying Y operators along a line starting directly to the
right of the syndrome location and ascending diagonally
to the right, reflecting at boundaries, until a corner is en-
countered from within the lattice. The residual recovery

operators then anticommute with the residual syndrome
locations. The destabilizer for the original syndrome lo-
cation is then simply the product of the partial and resid-
ual recovery operators.

For square codes, Y -type destabilizers do not exist, in
general, and, hence, a different approach to constructing
a candidate Y -type recovery operator must be adopted.
Given a complete syndrome for a square code, a can-
didate Y -type recovery operator can be constructed by
taking the product of partial recovery operators for each
syndrome location, since the residual boundary syndrome
locations cancel in the case of square codes; see Fig. 24.

For surface codes that are neither coprime nor square,
a candidate Y -type recovery operator is constructed by
dividing the lattice into a coprime region and square re-
gions. Partial recovery operators are constructed for each
region leaving residual syndrome locations only on pla-
quettes between regions. Residual syndrome locations
can then be moved off the lattice using Y -type stabiliz-
ers on the square regions.
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