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Tailored topological stabilizer codes in two dimensions have been shown
to exhibit high storage threshold error rates and improved subthreshold per-
formance under biased Pauli noise. Three-dimensional (3D) topological codes
can allow for several advantages including a transversal implementation of non-
Clifford logical gates, single-shot decoding strategies, parallelized decoding in
the case of fracton codes as well as construction of fractal lattice codes. Moti-
vated by this, we tailor 3D topological codes for enhanced storage performance
under biased Pauli noise. We present Clifford deformations of various 3D topo-
logical codes, such that they exhibit a threshold error rate of 50% under in-
finitely biased Pauli noise. Our examples include the 3D surface code on the
cubic lattice, the 3D surface code on a checkerboard lattice that lends itself
to a subsystem code with a single-shot decoder, the 3D color code, as well as
fracton models such as the X-cube model, the Sierpiński model and the Haah
code. We use the belief propagation with ordered statistics decoder (BP-OSD)
to study threshold error rates at finite bias. We also present a rotated layout
for the 3D surface code, which uses roughly half the number of physical qubits
for the same code distance under appropriate boundary conditions. Imposing
coprime periodic dimensions on this rotated layout leads to logical operators
of weight O(n) at infinite bias and a corresponding exp[−O(n)] subthreshold
scaling of the logical failure rate, where n is the number of physical qubits in
the code. Even though this scaling is unstable due to the existence of logical
representations with O(1) low-rate Pauli errors, the number of such represen-
tations scales only polynomially for the Clifford-deformed code, leading to an
enhanced effective distance.

*Equal contribution, alphabetical ordering.
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1 Introduction
Fault-tolerant quantum computation is a crucial ingredient for building a scalable quantum
computer. Topological stabilizer codes are a highly-prized family of low-density parity-
check (LDPC) codes due to their geometrically local parity checks, high storage threshold
error rates and low-overhead fault-tolerant logical gate implementations. It has been found
that topological codes can be tailored to noise to achieve higher success rates and threshold
error rates [1, 2]. Generally, for evaluating the performance of a Pauli stabilizer code,
a Pauli noise model is considered due to its efficient simulability. It has recently been
suggested that Pauli noise can be biased towards dephasing in certain realistic laboratory
qubits, or can be engineered to be so [3–6]. For biased Pauli noise, Clifford-deformed
surface codes such as the XZZX, XY and (XYZ)2 surface codes, the XYZ color code, and
families of randomly Clifford-deformed surface codes, have been shown to exhibit high
threshold error rates and enhanced subthreshold performance [2, 7–11].

Three-dimensional (3D) topological codes offer several advantages over all the known
two-dimensional topological codes. Unlike 2D stabilizer codes, 3D stabilizer codes such
as the 3D surface code allow for a transversal implementation of a non-Clifford gate and
overall, a fault-tolerant universal gate set [12–16]. Using 3D codes for storing logical
information can also be advantageous in terms of decoding. For instance, the loop-like
syndromes associated with 3D stabilizer codes such as the surface code and color code can
be decoded using single-shot decoding strategies [17–22]. Furthermore, 3D subsystem codes
such as the gauge color code [13, 23, 24] and the 3D subsystem surface code [25] allow for a
single-shot decoding strategy for general Pauli noise, where the noisy error syndrome need
only be measured once 1. Such single-shot decoding strategies not only reduce the time
overhead but also are more resilient to time-correlated noise [26]. 3D fracton topological
codes such as the X-cube model (partially) allow for parallelized decoding in submanifolds
of the lattice due to the mobility of syndromes being restricted to these submanifolds
[27]. Another recently discovered advantage of 3D codes such as the surface code is that
they can be used to construct fractal lattice codes by punching holes with appropriate
boundary conditions [28, 29]. Such fractal lattice surface codes allow for fault-tolerant
universal quantum computation with a reduced space overhead and a single-shot decoding
strategy that can be used for loop-like syndromes on the fractal geometry [29]. Even
though designing a qubit architecture with a 3D connectivity is a serious experimental
challenge in many quantum computing platforms, several recent advances have made the
prospect of a 3D architecture more amenable to near-term experiments. For instance,
qubit shuttling has recently been shown to enable 3D connectivity on a 2D layout [30],
and could for instance be implemented using silicon qubits [31], ion traps [32] or neutral
atoms [33]. Other platforms, such as 3D integrated superconducting qubits [34–36] and
photonic qubits [37–41] could also allow the realization of 3D codes.

Motivated by the advantages of 3D topological codes, we tailor them for enhanced
storage performance in the presence of biased Pauli noise. We construct Clifford-deformed
codes from the 3D surface code (cubic lattice) [42], the 3D color code [12, 43], the X-
cube fracton model [44], the Sierpiński fracton model [45] and the Haah code [46]. We
also propose a Clifford deformation of the 3D surface code on the checkerboard lattice,
which lends itself to a subsystem code with a single-shot decoding strategy. All of our
Clifford-deformed codes allow for decoding strategies with a threshold error rate of 50% at
infinite dephasing bias. These Clifford-deformed codes are constructed to have materialized

1This should be contrasted with 2D topological codes, where, in order to ensure fault-tolerance, the
noisy error syndrome must be measured O(d) times for a distance d code.
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linear symmetries that allow for the first step of decoding to be a minimum-weight perfect
matching (MWPM) decoder [42, 47] in submanifolds supporting those symmetries. The
resulting models after this first step have further linear symmetries that allow for another
round of the matching decoder. The combination of these steps gives the full matching
decoder with a threshold error rate of 50%.

For a subset of the codes mentioned above, we use the belief propagation with ordered
statistics decoder [48, 49] (BP-OSD) to numerically find the threshold error rates at finite
bias. We discover that the threshold error rate increases with the bias for both original
and Clifford-deformed codes. Beyond a critical value of bias, the threshold error rate of
the Clifford-deformed codes exceeds that of the original codes. However, we also find some
limitations of BP-OSD: for the X-cube model and the 3D surface code on the checkerboard
lattice, the apparent threshold error rate tends to recede when increasing the system size,
showing either a lower infinite-size threshold error rate or no threshold at all. This effect,
previously observed on 2D surface codes and color codes [22], is analyzed in more detail in
the context of 3D topological codes. We also compare BP-OSD with the sweep-matching
decoder—a combination of minimum-weight perfect matching and the sweep decoder [19,
20]—for the 3D surface code (cubic lattice) and find better threshold error rates with
BP-OSD.

Lastly, we define a rotated layout for the 3D CSS surface code, which offers the same
distances (dX , dZ) for both Pauli X and Pauli Z logical operators as in the standard
layout, while using roughly half the number of physical qubits, in analogy with the 2D
case [50]. Using this rotated layout for the Clifford-deformed surface code and imposing
coprime dimensions with appropriate boundary conditions leads to weight O(n) logical
operators at infinite dephasing bias. As a result, the subthreshold performance of the
Clifford-deformed surface code is enhanced, with a logical error rate scaling as e−O(n) with
the number of qubits n, in comparison to e−O(n1/3) for the original code.

The paper is structured as follows: In Section 2, we review biased noise models and
Clifford-deformed codes. We discuss the notions of materialized symmetries in the context
of the 2D XZZX and XY surface codes, showing that both codes have a 50% threshold error
rate at infinite bias. For the XY surface code, we introduce a technique called the weight
reduction technique, that we also use for some of the 3D topological codes studied in this
paper. In Section 3, we present CSS and Clifford-deformed 3D topological codes, including
the surface code on a cubic lattice, the surface code on a checkerboard lattice, the color
code, and fracton models (X-cube model, Sierpiński fracton model and Haah code). We
describe the symmetries and prove the 50% threshold error rates at infinite bias for each
of our Clifford-deformed codes. In Section 4, we present numerical threshold error rate
estimates for some CSS and Clifford-deformed 3D codes under finite bias, using BP-OSD
and sweep-matching decoders. We also demonstrate some of the limitations of BP-OSD in
the context of 3D codes. In Section 5, we explore further optimizations including a rotated
layout that reduces the number of physical qubits n, and coprime lattice sizes that achieve
logical error rates scaling as e−O(n) in the subthreshold regime. Finally in Section 6, we
discuss the implications of our findings.

In Appendix A, we prove that the Clifford-deformed surface code on a checkerboard
lattice has a 50% infinite-bias threshold error rate. In Appendix B, we discuss the decoders
used in the numerical simulations for the threshold error rates at finite bias. In Appendix C,
we discuss the numerical methods used to estimate the threshold error rates at finite bias.
We list the table of contents below.
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2 Background
2.1 Biased Pauli noise
In order to evaluate the performance of a code, it is conventional to choose a noise model
where each qubit is independently subjected to quantum noise. Upon the Pauli stabilizer
measurements, such quantum noise is digitized to Pauli errors up to coherent rotation [51–
54]. To incorporate the coherent rotation in general is hard. However, the Pauli twirling
approximation has been found to yield estimates of threshold error rates that are close to
the ones found by including an efficiently tractable choice of coherent rotation [55]. For
our purposes, we consider a general single-qubit Pauli noise channel of the form

ρ → (1 − p)ρ + p (rXXρX + rY Y ρY + rZZρZ) (1)

where p ∈ [0, 1] is the single-qubit physical error rate and the weights rX , rY , rZ describe
the relative probability of Pauli errors X, Y , Z respectively, such that rX , rY , rZ ≥ 0 and
rX + rY + rZ = 1. For instance, a depolarising channel, with rX = rY = rZ = 1/3, causes
Pauli errors X, Y , Z with equal probabilities, and thus describes unbiased Pauli noise. On
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the other hand, a dephasing channel, with rX = rY = 0 and rZ = 1, results in Z errors
alone and describes infinitely biased Pauli noise. The bias ηZ for dephasing is formally
defined [50] as the ratio

ηZ := rZ

rX + rY
, (2)

such that (unbiased) depolarizing noise corresponds to ηZ = 0.5 while infinitely biased
noise corresponds to ηZ = ∞. In this work, we restrict our attention to noise channels
with symmetric dephasing bias such that rX = rY and hence, the noise is characterized by
physical error rate p and dephasing bias ηZ .

2.2 Clifford-deformed codes
We consider a Pauli stabilizer code C with stabilizer group generated by stabilizers {Si}
acting on the physical qubits Q. We can construct a new code C̃ by applying a Clifford
circuit UC consisting of single-qubit Clifford operations on the physical qubits Q. We
refer to this new code C̃ as a Clifford-deformed code. Under such a Clifford circuit, the
generators Si are modified to

S̃i = U †
CSiUC (3)

which also form a set of commuting Pauli operators. For biased Pauli noise models, it can
be advantageous to use a Clifford-deformed code. Intuitively, if more stabilizer generators
anticommute with the more common errors, the resulting increase in nontrivial syndrome
bits provides more information to the decoder to better estimate the correction operators.
Clifford deformations also have the effect of drastically reducing the number of Z-only or
mostly-Z, logical operators. As a result, this reduces the degeneracy of possible errors
causing a given syndrome, which can be exploited by decoders for superior performance.

Pioneering studies on Clifford-deformed codes for biased noise considered the XY sur-
face code [2] and the XZZX surface code [7] in two spatial dimensions. The former is
obtained from the CSS surface code in 2D by replacing all Pauli Zs by Y s in the sta-
bilizer generators while the latter is obtained (from the CSS surface code) by applying
a Hadamard operation on half of the qubits such that all stabilizer generators become
X ⊗ Z ⊗ Z ⊗ X; see Fig. 1. Both these Clifford-deformed codes have threshold error rates
that track the hashing bounds at finite dephasing bias and have a threshold error rate of
50% at infinite dephasing bias. However, unlike the XY code, the XZZX code threshold
error rates track the hashing bound for noise biased towards X and Y Pauli errors as well.
Recently, the performance of randomly Clifford deformations of the 2D surface code sub-
jected to noise biased towards dephasing, has also been investigated [8]. A phase of 50%
infinite-bias threshold error rates was found in the parameter space of (ΠXZ , ΠY Z), where
ΠXZ(ΠY Z) is the probability of a Clifford operation that implements the permutation
X ↔ Z (Y ↔ Z). This phase can be explained intuitively via a mapping to percolation
problems. Moreover, certain randomly Clifford-deformed surface codes on odd × odd di-
mensions, outperformed the XZZX and XY codes with the same dimensions in the scaling
of the subthreshold logical failure rate.

A suitable choice of Clifford deformation can result in a higher threshold error rate and
can also improve subthreshold failure rates for finite system sizes. But subthreshold failure
rates for finite system sizes are also sensitive to the dimensions and boundary conditions
(note the mention of odd × odd dimensions in context of subthreshold failure rates in the
previous paragraph). For instance, choosing coprime periodic dimensions for the XZZX
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Figure 1: Illustration of the XZZX surface code. (a) Original surface code stabilizers, on a square lattice
with periodic boundary conditions. Qubits are on edges and stabilizers on faces and vertices. (b) XZZX
surface code stabilizers, obtained by applying a Hadamard operation on all the vertical qubits. (c) At
infinite Z bias, we can ignore the Z part of the stabilizers to form a classical code, whose parity-check
operators (red edges) are supported on two qubits (red dots). (d) The product of weight-2 parity checks
along a vertical line is equal to the identity operator. This means that each vertical line contains an
even number of excitations, which can be independently decoded by matching. We call this type of
relation a materialized linear symmetry.

code results in a subthreshold failure rate scaling of e−O(n) in comparison to that of e−O(
√

n)

for the CSS surface code.
For translation-invariant deformations such as the XZZX and XY surface code, the 50%

threshold error rates at infinite bias can be understood in terms of the symmetries of the
stabilizer group that appear in this noise regime. We review this for the XZZX code and
the XY code below.

2.3 XZZX code: materialized symmetries and conserved quantities under biased noise
The XZZX surface code can be obtained by applying a Hadamard operator on every vertical
qubit of the CSS surface code. The resulting stabilizers are shown in Fig. 1b. At infinite Z
bias, the action of noise on the qubits where a stabilizer acts as Z results in no syndrome.
Hence, the stabilizer effectively acts as identity on these qubits for infinite-bias noise. As
a result, the code becomes equivalent to a classical code made of two-body parity-check
operators Bf and Av, as illustrated in Fig. 1c.

This resulting effective model has the following relations on each vertical line ℓ of the
lattice: ∏

f∈ℓ

Bf = I, (4a)

∏
v∈ℓ

Av = I. (4b)

These relations, represented in Fig. 1d, are referred to as materialized subsystem symmetries
[27, 47]. Because of these symmetries, the syndrome values bf and av of all the stabilizers
under infinite-bias noise obey ∏

f∈ℓ

bf = 1, (5a)

∏
v∈ℓ

av = 1, (5b)
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Figure 2: Illustration of the weight-reduction technique on the XY code. (a) XY code lattice. Qubits are
on the vertices. Dark (resp. light) plaquettes are stabilizer generators made of X (resp. Y ) operators.
This code can be obtained by applying a phase gate and a Hadamard gate to every qubit of the CSS
surface code. (b) Linear symmetry of the code at infinite Z bias, assuming periodic boundary conditions.
In this regime, the XY code becomes a classical code with the same four-body checks on every square.
We can interpret each column as a repetition code (see dashed line for an example), where the purple
edges are the variables and the yellow squares the checks. Indeed, the product of the yellow checks
along the dashed line is effectively identity for pure Z noise. Decoding this repetition code gives us the
parity of the two qubits on each purple edge. (c) Second level of repetition codes. Once matching has
been performed on all the columns, we obtain new two-body checks on all the horizontal edges (purple).
They themselves form linear symmetries along each row. Matching along these symmetries allows one
to decode errors on all the qubits. (d) Example of decoding using the weight-reduction strategy. Errors
correspond to red vertices and face excitations to yellow squares. In the first decoding step, we use
minimum-weight perfect matching between squares along each vertical line. The resulting “corrections”
are the purple edges. This means that one of the two qubits of each purple edge is predicted to have
an error. (e) In the second decoding step, the purple edges are reinterpreted as excitations of some
horizontal repetition codes. Using matching on each repetition code gives the desired correction.
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which are the conservation laws associated with the materialized subsystem symmetries.
This implies that at infinite Z bias, the number of excitations of the XZZX stabilizer gener-
ators along any vertical line is even. In other words, single stabilizer generator syndromes
can only “move” along vertical lines at infinite bias under application of Z errors. This
leads to a simple decoding strategy for an XZZX code subjected to Z errors: we match the
syndromes along each line independently. This is equivalent to decoding L independent
classical repetition codes, each of size L. Since the repetition code has a threshold error
rate of 50%, the success rate of this infinite-bias decoder is lower-bounded by:

psuccess ≥
(
1 − Ae−αL

)L
≈ 1 − ALe−αL −−−−→

L→∞
1 (6)

for any fixed physical error rate below 50%, where A and α are two positive constants.
The reason this expression is a lower bound and not an equality is that failing to decode
an even number of repetition codes also results in successful decoding. Thus this strategy
results in a threshold error rate of 50% [7].

2.4 XY code: weight-reduction technique
The XY surface code [2] is another example of a Clifford-deformed surface code that has
a threshold error rate of 50% at infinite bias. It is formed by applying an S gate and
a Hadamard gate on every qubit, having the effect of turning all Z stabilizers into Y
stabilizers, as shown in Fig. 2a. As a result, at infinite Z bias, the code becomes a classical
code where the parity checks are four-body terms supported on every square.

To prove that this code has a 50% infinite-bias threshold error rate, we need to gen-
eralize the technique developed for the XZZX surface code. As can be seen in Fig. 2b,
the checks form linear symmetries along both the vertical and horizontal directions. How-
ever, in contrast to the XZZX code, these symmetries involve weight-4 checks, making the
underlying decomposition into repetition codes less obvious to see.

To decompose the code into repetition codes, we use a two-step decoding strategy that
we call the weight-reduction technique, which we use extensively in our study of 3D codes.

In the first step, we start by writing each square check as the parity of its two incident
horizontal edge checks, where an edge check is defined as the parity of its two incident
vertices. In Fig. 2b, these horizontal edge checks, surrounding the top and bottom part of
each square, are represented in purple. Note that this is a purely formal manipulation, as
the edge checks are not part of the syndrome at the moment.

We now use the linear symmetries consisting of the product of square checks along
any vertical line. An example of such a symmetry is highlighted in Fig. 2b. These linear
symmetries give rise to repetition codes, where the data bits are the horizontal edge checks
and the parity checks are the squares acting on two neighboring edges. Successful decoding
of these repetition codes allows us to obtain the value of all the horizontal edge checks,
which therefore become part of the syndrome. In other words, assuming a successful
matching, we turn the weight-4 checks into weight-2 checks supported on the horizontal
edges of the code. This is the core of the weight-reduction technique.

The second decoding step starts by noticing that the new horizontal edge checks form
a linear symmetry on each horizontal line: the product of edges along any horizontal line is
equal to the identity. Each horizontal line can therefore be interpreted as a repetition code,
and decoding all the repetition codes allows us to correct errors on all the qubits. Those
linear symmetries are illustrated in Fig. 2c. An example of decoding with this two-step
strategy is shown in Fig. 2d and 2e.
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(a)

(b)

Figure 3: (a) Stabilizer generators in the CSS 3D surface code are vertex operators on each vertex and
face operators for each face, for which there are three orientations. (b) Stabilizer generators in the
Clifford-deformed surface code obtained via Hadamard operations on qubits along vertical edges.

We now show that this decoding strategy leads to a threshold error rate of 50%. For
a given physical error rate below 50%, the probability that this decoder succeeds is lower-
bounded by the probability that both the L 1D matchings of the first step and the L 1D
matchings of the second step are successful. More precisely, for a fixed physical error rate
below 50%, we have

psuccess ≥
(
1 − Ae−αL

)2L
−−−−→
L→∞

1, (7)

where A and α are positive constants. This shows that the threshold error rate of the XY
code under infinite Z bias is 50%.

3 3D Clifford-deformed topological codes
In this section, we present Clifford deformations of 3D codes with a macroscopic number of
materialized symmetries at infinite bias. Having a macroscopic number of such symmetries
leads to a macroscopic number of conservation laws obeyed by the syndromes, and this
can lead to a decoder with a high threshold error rate.

Our general strategy for showing that a Clifford-deformed code has a threshold error
rate of 50% at infinite Z bias is the following. We start by identifying the linear symmetries
of the code when the Z part of the stabilizers is ignored. Each linear symmetry gives rise
to a repetition code decoding problem. We can therefore construct a decoder that starts
by a round of minimum-weight perfect matching (MWPM) decoding [42, 47] on the one-
dimensional submanifolds supporting the symmetries. This results in a new model with
parity-check operators of reduced weight, as demonstrated for the XY code in Section 2.4.
We then identify the linear symmetries of this new model with reduced-weight stabilizers,

9



(a) (b)

Figure 4: Errors and logical operators of the CSS 3D surface code. (a) Errors in the 3D surface code
create two types of syndromes: point-like syndromes at the boundary of chains of X errors, and loop-like
syndromes around membranes of Z errors. (b) Examples of logical X and Z operators of the 3D surface
code.

decode the corresponding repetition codes using MWPM, and repeat the process until a
correction operator has been assigned to all the qubits. Due to the fact that each step of
this decoding strategy consists of decoding repetition codes, the existence of such a decoder
for any Clifford-deformed code shows that the overall threshold error rate of the code is
50%.

We now present our Clifford-deformed codes and their explicit decoders one by one
below.

3.1 3D surface code
The conventional form of the 3D surface code is defined on a cubic lattice with qubits
sitting on edges. The stabilizer generators consist of the vertex operators Av =

∏
e∈v Ze,

made of Pauli Z operators on each of the six edges e adjacent to a vertex v, and the face
operators Bf =

∏
e∈f Xe, made of Pauli X operators on each of the four edges adjacent

to a face f , as illustrated in Fig. 3a. The syndromes associated with violations of vertex
stabilizer generators are point-like and created in pairs at the boundaries of strings of X
errors. The syndromes associated with violations of face stabilizers are loop-like syndromes
and created at the boundaries of membranes of Z errors, as shown in Fig. 4a. The logical
X operators are topologically nontrivial string operators and the logical Z operators are
topologically nontrivial membranes. In particular, on a 3D torus, there are three pairs
of inequivalent minimum-weight logical operators Xu, Zu, one for each axis u ∈ {x̂, ŷ, ẑ},
where Xu is a string of X operators oriented along u, and Zu is a membrane orthogonal
to u. Examples are shown in Fig. 4b. Thus, the 3D surface code encodes three logical
qubits and has code distance min(Lx, Ly, Lz), specified by the minimum weight of the
string operators. One can define a open boundary version of the code on a cubic lattice
with rough boundaries on a pair of opposite faces and smooth boundaries on remaining
four sides. The logical string operator connects the rough boundaries while the logical
membrane operator connects the smooth boundaries. Hence, the code encodes one logical
qubit.

We consider a Clifford deformation of the 3D surface code where we apply a Hadamard
operator on all the qubits on edges oriented along the z direction, which we call vertical
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(a) (b)

Figure 5: Materialized linear symmetries of the Clifford-deformed 3D surface code. Products of
plaquette/vertex operators along vertical lines are made only of Z operators, and are therefore effectively
equivalent to the identity in the purely Z infinite-bias noise regime. (a) Product of vertical plaquette
operators (yellow) along two vertical lines. (b) Product of vertex operators along a vertical line

qubits. On the contrary, horizontal qubits which reside on edges oriented along the x
or y directions remain untouched by the Clifford deformation. The resulting stabilizer
generators are shown in Fig. 3b. The code has certain linear materialized symmetries for
infinitely biased noise. Following the techniques that utilized materialized symmetries at
biased noise to define decoding strategies for two-dimensional topological codes [7, 27, 47,
50], we prove the following theorem.

Theorem 1. The Clifford-deformed 3D surface code has a threshold error rate of 50%
under pure Z noise.

Proof. This code has linear materialized symmetries as shown in Fig. 5. The first set of
symmetry operators consists of products of vertex stabilizers along a one-dimensional closed
cycle in the z direction. These products consist solely of Pauli Z operators and hence
effectively act as identity at infinite Z bias. The other symmetry consists of products of
XZZX face stabilizers in the xz and yz planes along vertical lines. Due to the conservation
laws obeyed by the syndrome along these symmetry lines, we can independently match
excitations along these lines as explained below.

At infinite bias, we have only Pauli Z errors, which anticommute with only X Pauli
operators in the stabilizer generators. Hence one can ignore the Z terms and consider
only anticommutation between the Z errors and the X stabilizer generators. This is
equivalent to considering a classical parity-check code where Z errors are detected by
a parity-check matrix that denotes the location of X terms in the stabilizer generators.
Thus the Clifford-deformed 3D surface code becomes a classical code, with weight-2 checks
on vertices, xz faces, and yz faces. These checks form the linear symmetries discussed
earlier and illustrated in Fig. 5. Errors on the qubits oriented in the z direction can
be decoded by performing matching on the vertices along the corresponding symmetry
lines. An example of decoding of the errors that create syndromes of vertex operators is
illustrated in Fig. 6a. Errors on qubits oriented in the x and y directions can be decoded
by performing matching on the xz and yz faces along each vertical line respectively. An
example of decoding of face syndromes is illustrated in Fig. 6b. If all these 3L2 matchings
succeed, by correctly identifying the position of the errors, we have succeeded in decoding
all the qubits. Therefore, the probability of success is lower-bounded by the probability of
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(a) (b) (c)

Figure 6: Decoder used to prove that the Clifford-deformed 3D surface code has a threshold error rate
of 50% at infinite Z bias. (a) Decoding of syndromes on vertices. Under local Pauli errors, vertex
syndromes (yellow spheres) can only move in the vertical direction due to the linear symmetries of
Fig. 5b. We can therefore decode errors on vertical qubits by matching vertex syndromes along this axis.
(b) Decoding of syndromes on faces. Under local Pauli errors, xz and yz face syndromes (shown as
yellow squares) can only move in the vertical direction due to the linear symmetries of Fig. 5a. We can
therefore decode errors on the horizontal qubits by matching the face syndromes along the vertical axis.
(c) Decoding of residual face syndromes. The decoder can be further improved by decoding residual
errors coming from failed matchings in (b). A failed matching results in an identical xy face syndrome
on every xy plane. These can be decoded using a 2D minimum-weight perfect matching algorithm.

succeeding in all these 3L2 matchings. Hence, for a fixed physical error rate below 50%,
we have

psuccess ≥
(
1 − Ae−αL

)3L2

−−−−→
L→∞

1 (8)

where α and A are positive constants. Therefore, the code has a threshold error rate of
50% at infinite Z bias.

While the decoder described in the proof is sufficient to get a 50% threshold error
rate, note that it can be further improved by taking into account the xy face syndrome
information as well. Let us consider a failed matching during the face decoding step. By
definition, it results in a line of errors on the horizontal qubits along the vertical direction,
as illustrated in Fig. 6c. It means that all the xy face syndromes are identical on every xy
plane. Since we have a 2D materialized symmetry on xy planes, we can decode them using
a 2D minimum-weight perfect matching algorithm to return to the codespace.

3.1.1 3D surface code on the checkerboard lattice

Topological codes can be defined on various lattices or triangulations of a manifold for the
same topological order. The 3D surface code on a checkerboard lattice is shown in Fig. 7b.
The code is defined using Z cube stabilizers on one sublattice and X triangle stabilizers
on the other sublattice.

Such a variant of the 3D surface code was used in the construction of 3D surface
codes with a transversal CCZ gate [16]. Moreover, these checkerboard lattice codes are
instrumental in the construction of the CCZ gate for the 2D surface code [56], and the
3D subsystem surface code [25]. This surface code variant is defined on a cubic lattice of
even dimensions with qubits sitting on edges. The cubic cells of the checkerboard lattice
come in two colors. Half of these cells (i.e. of one color) have a 12-body Z cube stabilizer
supported on them i.e. Ac =

∏
e∈c Ze is product of Z operators over the twelve edges of the
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(a)

(b) (c)

Figure 7: 3D surface code on the checkerboard lattice. (a) Checkerboard lattice. The yellow cubes
represent the cube stabilizers and the empty cubes represent where triangle stabilizers would go. They
have been omitted for clarity, but note that there are 8 of them in each empty cube. (b) Original CSS
stabilizers. (c) Stabilizers of the Clifford-deformed code. The red edges highlighted in (a) are the edges
where the X ↔ Z Clifford deformation is applied.

cube. The other half of the cubic cells each have eight triangle-shaped stabilizer operators,
associated with the eight vertices of the cell. A triangle stabilizer on a vertex v of a cubic
cell c is defined as the product of three X operators adjacent to v and contained in c,
Bc,v =

∏
e∈c∩v Xe. The stabilizer generators are illustrated in Fig. 7. Since the topological

order is independent of the lattice details, the syndromes of this code also come in point-
like and loop-like flavors. The syndromes of the cube stabilizers are point-like and created
at the ends of a string of Pauli X errors. The syndromes associated with the triangle
stabilizers form a loop around membranes of Z errors, as shown in Fig. 8a.

The checkerboard lattice surface code also encodes three logical qubits on an even ×
even × even torus with the logical operator pairs consisting of nontrivial X strings and
Z membranes along and orthogonal to three lattice directions respectively (see Fig. 8b).
We consider a Clifford deformation of the checkerboard lattice surface code which consists
of applying a Hadamard operation on half of the vertical qubits, in a three-dimensional
checkerboard manner (see Figs. 7a and 7c). This Clifford-deformed checkerboard lattice
surface code has a 50% threshold error rate under pure Z noise. The proof is presented in
Appendix A.

3.2 3D color code
The 3D color code can be defined on any 4-valent 3D lattice whose cells are 4-colorable,
i.e. one should be able to assign one of four colors to each of the cells such that any two
cells sharing a face have different colors. Here, we study the 3D color code defined on
the truncated octahedral lattice with periodic boundary conditions, as shown in Fig. 9a.
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(a) (b)

Figure 8: Errors and logical operators of the surface code on a checkerboard lattice. (a) Errors in the
surface code on a checkerboard lattice with non-trivial syndromes (yellow). (b) Example of X and Z
logical operators of the surface code on a checkerboard lattice.

In this lattice, each cell is a truncated octahedron, made of 24 vertices, 6 square faces
and 8 hexagonal faces. X stabilizer generators are defined on every cell, and Z stabilizers
on every face, as shown in Fig. 9b. Coloring the cells using yellow, red, blue and green,
we can describe the lattice as the interlacing of a red-yellow and a blue-green sublattice,
where cells of each sublattice are connected via square faces. Cells belonging to different
sublattices are connected via hexagonal faces. Here, we use the convention of describing
faces by the two colors of their adjacent cells. For instance, a face at the intersection of a
yellow cell and a red cell is called a yellow-red face.

There exists a mapping between color codes and surface codes in any spatial dimension.
A string of X errors also produces a pair of point-like syndromes on 3-cells, and a membrane
of Z errors also produces a loop-like syndromes on 2-cells (faces). If we impose periodic
boundary conditions on the lattice defined above, the code encodes 9 logical qubits, with
three X string logical operators on each direction, and three Z membrane logical operators
on each plane. The similarities between the two codes can be understood using a folding
procedure, which maps three copies of the 3D surface code to the 3D color code [15, 57].
However, the 3D color code has some unique properties, such its transversal T gate and
its flexible subsystem variant, making it a competitive candidate for a practical 3D code.

To tailor the 3D color code to biased noise, we select all yellow-red squares normal to
the x direction, and apply a Hadamard to diagonally opposite qubits of each square, as
illustrated in Fig. 9a. We now show that the resulting code has a 50% threshold error rate
at infinite Z bias.

Theorem 2. The Clifford-deformed 3D color code has a threshold error rate of 50% under
pure Z noise

Proof. We start by decoding the syndromes on the 3-cells, effectively supported on four
qubits at infinite Z bias (the purple qubits in Fig. 9a). For this, we exploit two materialized
linear symmetries, represented in Figs. 10a and 10b, along the x and z directions respectively.
By the weight-reduction technique, matching cell syndromes along these two directions
results in new weight-2 checks, which form linear symmetries along the y axis, as shown in
Fig. 10c. Matching along these resulting linear symmetries completes the decoding of the
syndromes on the 3-cells. Since all steps consist of decoding repetition codes, we have 50%
threshold error rate on the cell sector.
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(a) (b)

Figure 9: 3D color code on a truncated octahedral lattice with periodic boundary conditions. (a)
Truncated octahedral lattice, where qubits live on vertices and stabilizers live on cells and faces. The
purple vertices correspond to qubits that we choose to Clifford-deform with a Hadamard operation. (b)
Original stabilizers. Z stabilizer generators are supported on the 24 qubits (blue vertices) of every cell.
X stabilizer generators are supported on every face, both hexagonal and square.

(a) (b) (c)

Figure 10: Linear symmetries of the cells. Red qubits are the Clifford-deformed ones, which effectively
become the support of the cell stabilizers in the infinite Z bias regime. (a) Symmetry of the yellow and
red cells along the x axis. (b) Symmetry of the blue and green cells along the z axis. (c) Matching
along the symmetries (a) and (b) gives rise to 2-body checks that form new linear symmetries along the
y axis (black lines)
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(a) (b)

Figure 11: Step 1 of decoding of face syndromes. (a) Linear symmetry of the hexagonal faces: multiplying
four hexagonal faces (marked by purple hexagons) on any red or yellow cell gives an eight-body check
(red and purple vertices). Since the red vertices represent Clifford-deformed qubits that can effectively
be removed from the stabilizers at infinite Z bias, these eight-body checks effectively become four-body
(purple vertices). The product of these checks along the y axis forms a linear symmetry. (b) Successful
matching along the linear symmetry in (a) gives rise to two-body checks supported on the yellow-red
squares of the xz plane. Combining them with the checks lying on the green-blue squares of the xy
plane, which are effectively two-body due to the Clifford deformation, we get a linear symmetry along
the x direction, represented by the black lines. Matching along these black lines allows us to decode
errors on all purple qubits.

(a)

(b)

Figure 12: Step 2 of decoding of face syndromes. Red vertices represent the Clifford-deformed qubits
(effectively excluded from the face stabilizers at infinite Z bias), while black vertices represent the qubits
on which errors have already been decoded in the previous step. (a) Linear symmetries in the y direction,
involving weight-4 checks sitting on both squares and hexagons. (b) Matching along the symmetries
represented in (a) results in new weight-2 checks, supported either on ends of hexagon-square edges or
on ends of hexagon-hexagon edges. Combining the new checks supported on ends of hexagon-hexagon
edges with the checks supported on the red-yellow squares of the yz plane (which are also weight-2 due
to the Clifford deformation), we get a linear symmetry along the z axis, represented by the black line.
The remaining new weight-2 checks on ends of hexagon-square edges on the blue-green squares of the
yz plane are used in the next step. Note also that the yellow-red squares of the xy plane effectively
become weight-2 checks after this step.
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Figure 13: Step 3 of decoding of face syndromes. Using both the weight-2 checks supported on the
blue-green squares of the yz plane, obtained in the second decoding step, and the checks sitting on the
yellow-red squares of the xy plane (which are weight-2 due to the second step as well), we get new
linear symmetries along the y axis, shown with black lines. Matching along these black lines allows us
to decode errors on all the remaining qubits shown in purple.

Decoding of the face syndromes is done in three steps, each of which decodes errors
on a different subset of the qubits. In the first step, illustrated in Fig. 11, we notice the
existence of a linear symmetry along the y direction. The main unit of this symmetry is a
four-body check constructed by taking the product of four adjacent hexagons in a red or
yellow cell, as shown in Fig. 11a. Matching along this symmetry results in new weight-2
checks on the yellow-red faces of the yz plane, which can be combined with effectively
weight-2 checks on the blue-green faces of the xy plane in an alternating fashion to form a
linear symmetry along the x axis, as shown in Fig. 11b. Matching along such symmetries
completes the decoding of errors on the purple qubits in Fig. 11b.

In the second step, illustrated in Fig. 12, we notice that the hexagons are now effectively
weight-4, and form linear symmetries in the y direction when combined with square faces
in a square-hexagon-hexagon repeating manner. Matching along these symmetries, as
shown in Fig. 12a, gives us new weight-2 checks, supported on the ends of either a hexagon-
hexagon intersection edge, or a square-hexagon edge. Combining the weight-2 checks on
hexagon-hexagon edges with the weight-2 checks supported on the red-yellow squares of the
yz plane, we get new linear symmetries in the z direction, as shown in Fig. 12b. Matching
along these completes the decoding of errors on the purple qubits of Fig. 12b.

In the final step, illustrated in Fig. 13, we observe that the remaining weight-2 checks
on square-hexagon edges obtained in the second step combine with effectively weight-2
checks on yellow-red squares of the xy plane to form new linear symmetries along the y
axis. Matching along these symmetries decodes the errors on the remaining qubits.

Since errors on all the qubits have been decoded by performing matching on a polynomial
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(a)

(b)

Figure 14: X-cube model. (a) Original stabilizers. (b) Clifford-deformed stabilizers

number of repetition codes, our decoder has a threshold error rate of 50% for the Clifford-
deformed 3D color code.

3.3 Fracton codes
Fracton models offer an interesting set of models to study under biased noise because the
models have intrinsically rigid logical operators. This means that under multiplication
by stabilizer generators, the logical operators do not deform in a topological sense. For
instance, under stabilizer multiplication, a rigid string-like logical operator may not deform
into a string-like logical operator of the same width.

By choosing an appropriate Clifford deformation of the stabilizers, fracton models can
have materialized subsystem symmetries with respect to infinite-bias noise. The combina-
tion of the intrinsic conservation laws in addition to the conservation laws associated with
the materialized subsystem symmetries with respect to the noise, can lead to decoders with
high threshold error rates. Below, we discuss a few canonical examples of fracton models,
the X-cube model (type-I fracton model), the Sierpiński fracton model (fractal type-I) and
the Haah code (type-II) along with their Clifford-deformed codes 2.

3.3.1 X-cube model

The X-cube fracton model is the canonical example of a (foliated) type-I fracton topological
order which is defined by the presence of topological excitations with restricted mobility.
It is characterized by a sub-extensive ground space degeneracy and rigid string logical
operators. A foliated topological stabilizer model is defined by a foliation structure [58]
which implies that the model can be grown by stacking with a 2D topological state and
applying a local unitary. The X-cube model is 3-foliated, which implies that stacks of
surface codes can be extracted under a local unitary along all three lattice directions.

2Type-I fracton models have string logical operators while type-II do not. Fractal type-I fracton models
have fractal-shaped rigid logical operators.
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(a) (b)

Figure 15: (a) Errors in the X-cube model create two types of syndromes: planons (at cells) and lineons
(at vertices with orientation). (b) Example of X and Z logical operators of the X-cube model in red
and blue respectively.

(a) (b)

Figure 16: Symmetries of the Clifford-deformed X-cube model at infinite Z bias. (a) Cube stabilizers
reduce to four-body checks (red squares) between vertical qubits, forming an independent infinite-bias
XY code on each layer. They therefore inherit the linear symmetries and the 50%-threshold error rate
of the XY code (see Section 2.4). (b) Vertex stabilizers in the yz and xz planes effectively become
two-body checks (red edges) between qubits on horizontal edges that form linear symmetries along the
x and y axes respectively.

The X-cube fracton model [59] is defined on a cubic lattice with qubits on edges. The
stabilizer generators come in two types: the cube stabilizers, defined on each cubic cell of
the lattice as the product of Z operators over the twelve edges of the cube, Ac =

∏
e∈c Ze,

and the vertex stabilizers, defined for each vertex v and orientation u ∈ {x̂, ŷ, ẑ} as the
product of the four X operators adjacent to v and orthogonal to u, Bv,u =

∏
e∈v:e⊥u Xe. See

Fig. 14a. Considering the X-cube model on an Lx ×Ly ×Lz cuboid with periodic boundary
conditions, the logical operator basis has independent rigid logical string operators that
cannot be deformed into each other, i.e. are inequivalent under stabilizer multiplication.
This leads to a macroscopic number of independent logical operator pairs and a linear
growth of the number of encoded qubits. These logical operators can be expressed as
X̄ î

k̂,ℓ
, Z̄ ĵ

k̂,ℓ
on pairs of non-contractible loops, where î ̸= ĵ ̸= k̂ run over {x̂, ŷ, ẑ} and

ℓ = 0, . . . , Lk − 1. They are defined as

X̄ x̂
ẑ,ℓ =

∏
x

Xx,0,ℓ,ẑ , Z̄ ŷ
ẑ,ℓ =

∏
y

Z0,y,ℓ,ẑ , (9)
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and in a similar fashion for other permutations of x, y, z, where Xx,y,z,k̂ (resp. Zx,y,z,k̂)
denotes a Pauli X (resp. Z) operator on the edge adjacent to the vertex at coordinates
(x, y, z) pointing in the +k̂ direction for k̂ ∈ {x̂, ŷ, ẑ}. These string operators are not
independent due to the three relations given by

∏
ℓ X̄ î

k̂,ℓ
=

∏
ℓ X̄ k̂

î,ℓ
and Z̄ î

ĵ,0 = Z̄ î
k̂,0. Thus,

there are overall 2(Lx + Ly + Lz) − 3 logical operator pairs. These string operators are
rigid in nature as is characteristic of type-I models. The rigidity of the string operators
directly corresponds to the restricted mobility of excitations. For example, particles that
are pair-created by a completely rigid undeformable string operator are restricted to move
in one dimension and are therefore lineons. Truncations of logical string operators of
X errors on a lattice plane create syndromes of cube stabilizers at their end points, as
shown in Fig. 15a. These syndromes cannot freely move to another plane (under arbitrary
noise) without creating other syndromes. Hence, the cube syndromes are referred to as
planons. Similarly, the vertex syndromes are created at the ends of rigid strings of Z
errors. Note that two of the vertex stabilizer generators are violated at each end of the
string. This composite syndrome at each end is referred to as the lineon since it cannot
move (under arbitrary noise) to another line away from the rigid string, without creating
more syndromes.

We consider a Clifford deformation of the X-cube model where a Hadamard is applied
on all vertical edges, similar to the Clifford deformation of the 3D surface code on a cubic
lattice. The Clifford-deformed stabilizer generators are represented in Fig. 14b. At infinite
Z bias, lineons on the Clifford-deformed X-cube model can only be created by Z errors on
z edges, while planons can only be created by Z errors on x and y edges. As a result, we
have the following materialized symmetries: the product of vertical planons along a vertical
line is effectively the identity, and the product of cubes along a horizontal line is effectively
the identity. These symmetries are represented in Fig. 16. Using the conservation laws
associated with these symmetries, we prove that Clifford-deformed X-cube model has a
threshold error rate of 50% at infinite Z bias. Note that, using statistical-mechanical
simulations, the optimal infinite bias thresholds for the CSS X-cube model with the cube
(fracton) term made of Pauli X operators, have been found to be 15.2% and 7.5% at infinite
X and Z biases respectively [60].

Theorem 3. The Clifford-deformed X-cube model has a 50% threshold error rate under
pure Z noise.

Proof. Let us first consider the cube stabilizer generators. As illustrated in Fig. 16a, at
infinite bias, these stabilizer generators are now effectively supported on four vertical qubits
and form independent sheets of infinite-bias XY surface codes on each layer. We showed
in Section 2.4 that this code has linear symmetries on all its rows and columns, and by
using the weight-reduction technique, we proved that it has a threshold error rate of 50%.
Since decoding the cube stabilizers at infinite bias is equivalent to decoding L different XY
codes, we can infer that the cube sector has a threshold error rate of 50%.

Let us now consider the lineon sector. As illustrated in Fig. 16b, at infinite bias, vertex
stabilizers in the yz and xz planes effectively become two-body checks between qubits on
horizontal edges that form linear symmetries along the x and y axes respectively. The
problem of decoding the lineon sector therefore becomes equivalent to decoding O(L2)
repetition codes, which also has a 50% threshold error rate. Therefore, the overall code
has a threshold error rate of 50%.
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(a)

(b) (c)

Figure 17: Sierpiński code, original and Clifford-deformed. (a) Original CSS stabilizers, defined on every
cube of a cubic lattice with two qubits per vertex. There are two types: X stabilizers (left) and Z
stabilizers (right). (b) Clifford-deformed X stabilizers. The Clifford deformation consists of applying a
Hadamard on all qubits of vertices on xz planes of even y. Therefore, stabilizers alternate between the
left and the right versions depending on the parity of y (c) Clifford-deformed Z stabilizers, using the
Clifford deformation described in (b).

3.3.2 Sierpiński fractal model

The Sierpiński fractal model, due to Castelnovo, Chamon and Yoshida [61, 62], is the
simplest example of fractal type-I topological order. Fractcal type-I topological order is
defined as type-I fracton topological order that is characterized by the presence of fractal-
shaped logical operators and hence does not admit a foliation structure. The model is
defined on a cubic lattice, where each vertex has two qubits. The stabilizer generators
are shown in Fig. 17a. This model supports rigid string operators (corresponding to one-
dimensional particles or lineons) in the ẑ direction and a Sierpinski triangle fractal operator
that moves topological excitations apart in 2D. Hence this model provides an example with
no planons which is consistent with it not having a foliation structure [63, 64].

We present the Clifford deformation of this model where a Hadamard is applied to all
qubits of alternating planes, such as on all xz planes with an even y coordinate as shown
in Figs. 17b and 17c. The model has materialized symmetries which lead to a threshold
error rate of 50% at infinite bias as stated below. Note that for the original CSS model,
one can use the relation from Ref. [65] involving the entropy function h(p) for infinite bias
threshold error rates pX (pZ) at infinite X bias (Z bias) respectively as follows,

h(pX) + h(pZ) ≈ 1, (10)

where h(p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy. Due to the invariance
of the model stabilizers under X ↔ Z permutation, permutation of two qubits on the sites,
and inversion, we have h(pX) = h(pZ). Together we get h(pZ) ≈ 1/2 which yields an

21
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Figure 18: Effective symmetries of the Clifford-deformed Sierpiński code under infinite bias. (a) Linear
symmetry of Clifford-deformed X stabilizers which allows us to decode errors on the second qubits of
vertices on planes of odd y. (b) New linear symmetry of Clifford-deformed X stabilizers obtained after
decoding the errors on qubits in (a). Since errors on the second qubits of the red vertices have all
been decoded, the XX terms become XI terms, allowing us to decode the errors on the first qubits
of vertices on planes of odd y. (c) Linear symmetry of Clifford-deformed Z stabilizers that allows
us to decode errors on the first qubits of vertices on planes of even y. (d) New linear symmetry of
Clifford-deformed Z stabilizers, obtained after decoding the errors on qubits in (c) using the same
argument as in (b). This allows us to decode errors on the second qubits of vertices on planes of even y.

optimal threshold estimate of pz ≈ 0.11 at infinite bias.

Theorem 4. The Clifford-deformed Sierpiński code has a threshold error rate of 50%
under pure Z noise.

Proof. We first study the Clifford-deformed X stabilizers in Fig. 17b. At infinite Z bias,
these effectively become two-vertex checks supported on planes of odd y, oriented either
along the x direction or the z direction. The checks oriented along the x direction have a
term IX on each vertex and form a linear symmetry, as shown in Fig. 18a. Matching along
it allows us to decode the errors on the second qubits of the vertices living on planes of odd
y. Once the errors on these qubits have been decoded, we can use them to simplify the
checks oriented in the z direction. More precisely, all the terms sitting on the second qubit
of a vertex can now be removed from the check, turning XX into XI. Those updated
checks form a new linear symmetry, shown in Fig. 18b. Matching along this symmetry
allows us to decode the first qubit of every vertex living on planes of odd y. The proof for
the Clifford-deformed Z stabilizers follows a similar pattern and is illustrated in Figs. 18c
and 18d. Overall, this decoding strategy is equivalent to decoding a polynomial number
of repetition codes (in the lattice size L), showing that it has a threshold error rate of
50%.

3.3.3 The Haah code

The Haah code is the canonical example of type-II fracton topological order, which is
characterized by the absence of string logical operators, presence of fractal logical operators,
and a sub-extensive ground space degeneracy that can fluctuate with the system size. The
stabilizer generators of the Haah code (CSS model) are shown in Fig. 19a.
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Figure 19: The Haah Code. (a) Original stabilizers. The code is defined on a cubic lattice, with two
qubits per vertex. Each cube of the lattice contains both an X and a Z stabilizer. (b) Clifford-deformed
Z stabilizer. A Hadamard is applied on the two qubits of half of the vertices, in a checkerboard manner
on each layer. As a result, half of the cells contain the stabilizer on the left, and half of them contain the
stabilizer on the right. (c) Clifford-deformed X stabilizer, when applying the transformation described
in (b).

We present the Clifford-deformed Haah code in Figs. 19b and 19c which we prove below
to have a 50% threshold error rate at infinite bias. Note that, similar to the CSS Sierpiński
model, for the CSS Haah code, one can also use the relation from Ref. [65] involving the
entropy function h(p) for infinite bias threshold error rates pX (pZ) at infinite X bias (Z
bias) respectively as follows,

h(pX) + h(pZ) ≈ 1, (11)

where h(p) = −p log(p). And again, due to the invariance of the model stabilizers under
X ↔ Z permutation, permutation of two qubits on the sites and inversion, we have
h(pX) = h(pZ). Together we get h(pZ) ≈ 1/2 which yields an optimal threshold estimate
of pZ ≈ 0.11 at infinite Z bias.

We now state the theorem about the threshold and its proof.

Theorem 5. The Clifford-deformed Haah code on a periodic lattice with dimensions
(Lx, Ly, Lz), such that Lz = 2k, Lx = Ly, and gcd(Lx, Lz) = 2, has a threshold error rate
of 50% under pure Z noise.

Such constraints ensure that the horizontal dimensions are even, which is required for
our checkerboard-like Clifford deformation to be well-defined, and that gcd(Lx, Lz) does
not grow with the lattice size, which is needed for the linear symmetries considered in our
proof. Because the number of encoded qubits in a fractal type-II fracton model like the
Haah code can fluctuate wildly with system size, it is subtle to extract the threshold error
rate from an arbitrary family of increasing system sizes. Nevertheless, there are families
of codes satisfying the above constraints whose number of encoded qubits is constant. We
checked this numerically for codes of size (2k +2, 2k +2, 2k) for k ≥ 2, which have 6 encoded
qubits, and (2 · 3k, 2 · 3k, 2k) for k ≥ 1, which have 6 encoded qubits.
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Figure 20: Deformed Haah code 50% threshold error rate proof, step 1 (a) Linear symmetry. Matching
along it allows a weight reduction to weight-2 checks (red edges) (b) Visualization of the second stabilizer
type on a 2D plane (c) New L-shaped pure “IX” stabilizer, obtained by multiplying the stabilizer in (b)
by the weight-2 checks obtained in (a). We call this an L-check.

Proof. Let us call the Clifford-deformed qubits type-A qubits, and the vertices they live
on type-A vertices. We refer to the other half of the qubits (resp. vertices) as type-B
qubits (resp. type-B vertices). Those two types of qubits alternate in a 2D checkerboard
manner on each horizontal layer of the lattice. In this language, the Clifford deformation
of the Z-type stabilizers gives stabilizers supported on type-A qubits only. We call these
stabilizers type-A stabilizers. Similarly, type-B stabilizers are the ones resulting from the
Clifford deformation of the X-type stabilizers, and are supported on type-B qubits only.

Let us start by considering only type-A stabilizers, which are shown in Fig. 19b.
The decoding strategy is the same when tackling type-B stabilizers. In the infinite-bias
regime, the Clifford-deformed code becomes a classical code, with two types of parity-check
operators alternating in a checkerboard manner. Those two types of checks have weight
4, but one is supported on four vertices and the other on three. We can observe the
presence of a linear symmetry for the ones supported on four vertices, as shown in Fig. 20a.
Matching along this symmetry results in the appearance of new weight-2 checks, with the
term “XI” on one vertex and “IX” on the other vertex. We call them “XI-IX” checks.

We then consider the other type of check supported on three vertices. Multiplying it
by two “XI-IX” checks, we get a new L-shaped weight-4 check made only of “IX” terms, as
represented in Fig. 20c. We call them “L-checks”.

We now use a technique introduced to study the classical Fibonacci codes [66] and the
XYZ color code [11]. We first notice that applying four L-checks as an L results in a new
L-check where the spacing between the non-zero qubits has doubled but the weight is still
4. Applying the same process recursively results in a fractal of original checks, forming an
L-check whose size can be an arbitrary power of two. This process is shown in Fig. 21a.
Note that this family of L-checks always lives on a 2D diagonal slice of our lattice, which
has dimensions (Lx, Lz). This is due to the choice of periodic boundary conditions and
equal horizontal dimensions.

We now use the fact that Lz = 2k. Applying the fractal process described previously,
we can create an L-check where two terms are separated by a distance of exactly 2k. Due
to the periodic boundary conditions, these two terms cancel out, leaving only two qubits
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Figure 21: Step 2 in the decoding of Clifford-deformed Haah code at infinite bias. Yellow dots on vertices
represent the application of an L-check, as shown on the left of (a), where red dots represent the qubits
in its support. (a) By multiplying the checks in a fractal manner, we can obtain a similar weight-4 check
with any power of two spacing between the qubits in its support. (b) Taking a periodic lattice with
vertical dimension Lz = 2k, we can make two of the qubits cancel out (green) to obtain a new weight-2
check (red) (c) On any periodic lattice with dimensions (Lx, Ly) such that gcd(Lx, Ly) = 2, diagonal
lines wrapping around the torus cover half of the vertices (red or purple). Therefore, the product of
these new weight-2 checks on a line forms a linear symmetry (either red or purple depending on the
starting point).

in the support of the check. This new weight-2 check is shown in Fig. 21b.
As gcd(Lx, Lz) = 2, we can multiply these weight-2 checks on a line to cover exactly

Lx qubits, before the line comes back to itself, as shown in Fig. 21c.
This is due to the fact that on a periodic lattice with gcd(Lx, Ly) = g, there are g

distinct diagonal lines covering each a fraction 1/g of the vertices [50]. Since the dimensions
of our diagonal slice is (Lx, Lz), it contains LxLz vertices, and the diagonal line formed by
the weight-2 checks covers LxLz/2 vertices. Dividing this by the size of the weight-2 check,
Lz/2, we obtain that the product of weight-2 checks on the line covers exactly Lx qubits.

Therefore, this product is equal to the identity operator and we get a linear symmetry.
By translating the large L-check, we can include any arbitrary qubit of the 2D diagonal
slice in the support of this linear symmetry. Matching along them on all the 2D slices
therefore results in decoding the errors on second qubits of all the type-A vertices. Using
the “XI-IX” check allows us to decode the errors on the first qubits of these vertices as
well. Finally, applying the same decoder to the type-B stabilizer, we can decode errors on
all type-B qubits.

Since this decoder only involved matching on a polynomial number of repetition codes,
we can deduce that our Clifford-deformed Haah code has a 50% threshold error rate at
infinite bias.

Note that the choice of Lx = Ly and gcd(Lx, Lz) = 2, while simplifying the proof, are
not strictly necessary to obtain the desired linear symmetries and the 50% threshold error
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rate. Relaxing these constraints has the effect of changing the size of the 2D diagonal slice,
as it can wrap around the torus several times when the horizontal dimensions are not equal.
The new size of the slice can be shown to be ℓ = LxLy/ gcd(Lx, Ly) = lcm(Lx, Ly). As a
result, the condition to obtain a linear symmetry on the weight-2 checks is modified: we
want the number of terms in the linear symmetry to grow polynomially with the system
size. As the number of terms is given by the size of the diagonal line which supports the
symmetry, lcm(ℓ, Lz) = lcm(Lx, Ly, Lz) 3 , divided by the size of the weight-2 check, Lz/2,
the condition can be reformulated as

lcm(Lx, Ly, Lz)
Lz

= Ω(poly(Lz)) (12)

Imposing Eq. (12) with Lz = 2k, and Lx, Ly even (to guarantee that the Clifford deforma-
tion is well-defined) is enough to have a 50% threshold error rate for the Haah code.

4 Threshold error rates at finite bias
Using the belief propagation with ordered statistics decoder (BP-OSD) [21, 48, 49], de-
scribed in Appendix B.1, we evaluate the threshold error rates of both the CSS and Clifford-
deformed 3D surface code defined on cubic and checkerboard lattices as well as the X-cube
model at different bias ratios over several orders of magnitude and at infinite bias. We also
estimate threshold error rates for the surface code on the cubic lattice using the sweep-
matching decoder described in Appendix B.2. We plot the threshold error rate estimates
for different values of bias in Fig. 23. The numerical values of the threshold error rate
estimates and uncertainties are listed in Table 2 for the surface code on a cubic lattice, in
Table 3 for the surface code on a checkerboard lattice and in Table 4 for the X-cube model.
The estimates are best-fit parameters to a finite-size scaling ansatz and uncertainties are
bootstrapped 1σ credible intervals that account for the finite number of trials and choice
of parameters. An in-depth overview of how these are obtained is in Appendix C. Unless a
lower numerical threshold error rate can be resolved by finite-size scaling the theoretically
proved 50% threshold error rate is tabulated and plotted for Clifford-deformed codes at
infinite bias.

We note that at moderate biases, three-dimensional surface codes such as the Clifford-
deformed surface code and the CSS surface code on a 3D checkerboard lattice, can have
threshold error rates close to the hashing bound and to those of 2D codes like XZZX
and XY . This offers a noise regime in which one could consider a dimensional jump for
implementation of non-Clifford gates and be able to maintain at least the code capacity
threshold error rates. For high bias ηZ ≳ 100, the Clifford-deformed surface code on a cubic
lattice beats the CSS surface code on a cubic lattice in threshold error rate performance,
with threshold error rates of 50% and 21.37(4)% respectively at infinite bias. The Clifford-
deformed code on the checkerboard lattice at infinite bias also boasts an advantage at
infinite bias. Above modest values of bias ηZ ≳ 30, the Clifford-deformed X-cube model
outperforms its CSS counterpart. This is owed to the rigid noise symmetries which allow
decoding in rigid submanifolds.

Limitations of BP-OSD As discussed in Appendix B.1, the performance of BP-OSD
greatly depends on the characteristics of the code, particularly its girth (size of the shortest
cycle in the Tanner graph) and its split-belief number (weight of the smallest error that

3Here we use the fact that lcm(lcm(a, b), c) = lcm(a, b, c).
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Code X-girth Z-girth X-split-belief Z-split-belief
number number

3D surface code (cubic) 8 8 2 3
3D surface code (checkerboard) 8 6 2 6
X-cube model 8 4 2 6
3D color code 4 6 2 12

Table 1: Girth and split-belief numbers for four of the 3D codes studied in this work. The girth is the
size of the shortest cycle of the Tanner graph, while the split-belief number is the weight of the smallest
error that causes a degenerate syndrome. We consider here the X and Z parts of the Tanner graph
separately, as we are using independent BP-OSD decoders for each error type. Here, the X-girth (resp.
Z-girth) corresponds to the girth when considering only the X (resp. Z) stabilizers in the Tanner graph,
and similarly so for the X and Z-split-belief numbers.

produces a degenerate syndrome). The latter can be calculated by taking the weight of
the smallest even-weight stabilizer and dividing it by two. We show these two numbers for
different 3D codes in Table 1.

A common phenomenon that appears for codes with low girth or low split-belief number
is the receding threshold error rate problem: the apparent threshold error rate decreases
with increasing system sizes [22]. We observed this finite-size effect for the 3D surface code
on a checkerboard lattice and for the X-cube model, while the 3D surface code on a cubic
lattice did not have this issue for sizes up to 22. An illustration of this phenomenon is shown
in Fig. 22 for the X-cube model at bias η = 10. Consequently, on codes where BP-OSD
suffers this limitation, there is greater uncertainty on the threshold error rate estimates
upon using the bootstrapped finite-size scaling method described in Appendix C, as can
be seen for instance in Table 4.

We also perform preliminary experiments on the 3D color code, but we observe a strong
receding threshold effect with an apparent threshold error rate orders of magnitude below
its optimal value. This can be explained by the particularly low girth of the 3D color code,
and entices us not to pursue these experiments.

Note that while we have provided decoders with 50% threshold error rate at infinite
bias for all the Clifford-deformed codes studied in this paper, BP-OSD does not always
achieve that threshold. For example in the X-cube model as seen in Fig. 23c and Table 4
where the threshold error rate is only 17.2(3)%. Nevertheless, the Clifford-deformed X-
cube model still outperforms the CSS X-cube model which has a lower threshold error rate
of 9.25(10)% when decoding with BP-OSD.
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Figure 22: Size-dependent reduction in apparent threshold error rate using a BP-OSD decoder for
increasing X-cube model lattice sizes under Z-biased noise with ηZ = 10. (left) Rate of logical Z errors
vs the physical error rate p. Note that the apparent intersection of the curves for L = 13 is somewhat
different from that of the L = 21. Despite the apparent threshold error rate shift, we still provide a
threshold error rate estimate by regression with the finite-size scaling ansatz. (right) Logical Z error rate
vs rescaled physical error rate x = (p − pth)1/ν where the threshold error rate pth and critical exponent
ν have been estimated by fitting to a finite-sized scaling ansatz, for which the best-fit curve and 1σ fits
are plotted against data points colored by code lattice size as detailed in Appendix C.

CSS Deformed

Bias ηZ BP-OSD Sweep-matching BP-OSD Sweep-matching

0.5 (5.95 ± 0.03)% 4.0+0.3
−0.5% 5.99+0.08

−0.1 % 4.42+0.12
−0.32%

1 - (5.4 ± 0.4)% - 5.06+0.06
−0.24%

3 12.25+0.05
−0.06% 11.48+0.11

−0.19% (7.94 ± 0.03)% (6.7 ± 0.6)%

10 22.3+0.04
−0.05% 14.9+0.5

−1.0% 12.12+0.12
−0.11% 11.6+0.3

−0.2%

30 (21.7 ± 0.04)% 14.6+0.3
−0.7% 17.76+0.12

−0.1 % (19.3 ± 0.3)%

100 21.46+0.02
−0.04% 14.3+0.4

−0.7% 23.0+0.6
−0.5% 20.6+0.5

−0.7%

∞ 21.37+0.04
−0.03% 14.59+0.11

−0.18% 50% 20.7+0.2
−0.3%

Table 2: Estimates and uncertainties of the threshold error rate pth for CSS and Clifford-deformed
surface codes on a cubic lattice using different decoders under finite and infinite bias as plotted in
Fig. 23a.
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Figure 23: Threshold error rate pth vs dephasing bias ηZ for some CSS and Clifford-deformed 3D
topological codes. (a) BP-OSD and sweep-matching threshold error rates of the 3D CSS surface code
and the Clifford-deformed surface code on a cubic lattice. (b) BP-OSD threshold error rates of the CSS
and Clifford-deformed surface codes on a checkerboard lattice. (c) BP-OSD threshold error rates of the
CSS and Clifford-deformed X-cube model.
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Bias ηZ CSS Deformed

0.5 4.54+0.05
−0.08% 4.6+0.3

−0.7%

3 10.64+0.06
−0.07% 5.9+0.4

−0.8%

10 9.3+0.2
−0.4% 7.5+0.4

−1.0%

30 8.9+0.3
−0.6% (10.7 ± 0.4)%

100 8.9+0.2
−0.3% 17.4+0.3

−0.2%

∞ (9.25 ± 0.08)% 17.2+0.17
−0.12%

Table 4: Estimates and uncertainties of the threshold error rate pth for the CSS X-cube model and
Clifford-deformed X-cube model using a BP-OSD decoder under finite and infinite bias as plotted in
Fig. 23c.

Bias ηZ CSS Deformed

0.5 (1.35 ± 0.04)% 1.25+0.03
−0.07%

3 (3.74 ± 0.03)% 2.67+0.06
−0.1 %

10 (10.24 ± 0.09)% 5.2+0.14
−0.19%

15 (15.1 ± 0.08)% -

20 19.72+0.09
−0.1 % -

30 29.09+0.13
−0.16% (10.3 ± 0.2)%

100 28.79+0.12
−0.11% 19.3+0.3

−0.2%

∞ (28.55 ± 0.13)% 50.0%

Table 3: Estimates and uncertainties of the threshold error rate pth for CSS and Clifford-deformed
surface codes on a checkerboard lattice using a BP-OSD decoder under finite and infinite bias as plotted
in Fig. 23b.

5 Rotated layout and subthreshold scaling
5.1 Rotated layout for the 3D surface code
We now define a rotated layout for the 3D surface code. The new lattice is obtained
by rotating the coordinates about the vertical z axis by 45◦ such that the horizontal
qubits formerly living on x and y edges now live on vertices on horizontal xy planes, while
vertical qubits formerly living on z edges now live on vertices floating between horizontal xy
planes. Nevertheless, we continue refer to qubits living on xy planes as horizontal qubits
and qubits floating in between xy planes as vertical qubits. Former vertex operators
become octahedron stabilizers, former vertical face stabilizers become diamond stabilizers,
and former horizontal face stabilizers become square stabilizers. Such a rotated layout
preserves the distances (dX , dZ) for both Pauli X and Pauli Z logical operators, while
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(a) (b)

(c)

Figure 24: Clifford-deformed 3D surface code on a rotated layout with smooth boundaries top and
bottom. In this representation, qubits live on vertices, while stabilizers live on octahedra (orange) and
faces (blue), which are either diamonds between xy planes or squares on xy planes. (a) 4 × 4 × 3
rotated lattice with open boundaries. (b) 4 × 3 × 3 rotated lattice with periodic boundaries. Note that
although the horizontal xy planes are always periodic, if one the of the dimensions along x or y is odd,
then the diamonds in between xy planes are not periodic along that direction, as illustrated here (blue
diamonds are not periodic in the length-3 direction). (c) Clifford-deformed stabilizer generators: (left to
right) octahedron acting as XZZX on horizontal qubits and Z on vertical qubits above and below,
diamond acting as Z on horizontal qubits and X on vertical qubits, diamond acting as XXXX, square
acting as XZZX on horizontal qubits.

using roughly half the number of physical qubits compared to the regular layout. This
new lattice is illustrated in Figs. 24a and 24b for open and periodic boundary conditions
respectively.

Note that for periodic boundary conditions with one odd horizontal dimension, such as
in Fig. 24b, the horizontal planes are periodic in both directions, but the vertical diamonds
are not periodic in the odd-length direction, resulting in a seam across which the checker-
board pattern of the horizontal planes of octahedron and horizontal square stabilizers are
incompatible, and vertical qubits are not connected by diamond stabilizers. To ensure that
the octahedron and square stabilizers commute across this seam, stabilizers touching the
seam on only one chosen side are modified by introducing “defects” at every horizontal
qubit on the seam, where a Hadamard is applied to modify these stabilizer definitions with
X ↔ Z at these defects, as illustrated in Fig. 25a.

To Clifford-deform the code, we apply a Hadamard only on every second horizontal
qubit on each xy plane in a checkerboard manner, while leaving vertical qubits untouched,
such that the resulting Clifford-deformed stabilizers are as shown in Fig. 24c. In the case of
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Figure 25: Horizontal layer of 3D surface code on rotated layout with odd × even horizontal dimensions
and periodic boundary conditions with seam (dashed), like that of Fig. 24b. The restricted action of
octahedron stabilizers (orange) and horizontal square stabilizers (blue) on horizontal qubits (vertices) in
the layer are labeled. The diamond stabilizers between adjacent layers, whose shadows are drawn as
faint blue lines, are disconnected across the seam. (a) Original stabilizers. Stabilizer terms modified by
defects on the seam are labeled in bold. Qubits where the Clifford deformation is applied as a Hadamard
are highlighted in purple. (b) Clifford-deformed stabilizers. Note that all stabilizers restricted on the
plane are of the form XZZX, including those on the seam.

an odd-length lattice, even the stabilizers with defects on the seam will be of this form after
Clifford deformation. Consequently, all the octahedron and horizontal square stabilizers
act as XZZX when restricted to horizontal planes, as shown in Fig. 25b, forming Lz

coupled layers of 2D XZZX codes.

5.2 Pure Z logical operator
The 2D XZZX code on a rotated layout with periodic boundaries and coprime dimensions
has pure Z logical operators supported on O(L2) = O(n) physical qubits [7]. The intuition
behind this fact is that syndromes propagate on the diagonals, and when the dimensions
of the lattice are coprime, strings of errors need to wrap around the whole torus in order
to form a non-trivial loop. As a consequence, the logical error rate p̄ for purely Z biased
noise scales as

p̄ ∝ e−α(p)dZ = e−α(p)n (13)

when the physical error rate p goes to zero, where α(p) is a polynomial in p and dZ is the
Z-distance of the code.

We establish a similar result for the Clifford-deformed 3D surface code, summarized in
the following theorem:

Theorem 6 (Lowest-weight Z-only logical). Consider an L×(L+1)×Lz Clifford-deformed
3D rotated surface code with periodic boundary conditions. If L ≡ 1 or 2 mod 4, then the
lowest-weight logical operator that consists of only I and Z Pauli operators acts with Z on
all horizontal qubits.

This means that Z-distance dZ scales as O
(
L3)

, or in other words, the logical error
rate for pure Z biased noise scales as

p̄ ∝ e−α(p)n. (14)
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Figure 26: Stabilizers can be converted into binary parity checks for Z errors.

(a) (b)

Figure 27: Proof that the pure Z logical of our tailored 3D rotated surface code is supported on
all the qubits of the code. (a) A parity check between any two horizontal qubits (red dots) can be
constructed by wrapping around the coprime plane along a diagonal (red squares). (b) Product of
zig-zag parity-check operators along the 4k + 2 periodic direction, which consists of 2k + 1 0110-type
checks and 2k + 1 1111-type checks.

We show here that under pure Z bias noise, the minimum distance of a rotated Clifford-
deformed 3D surface code (with periodic boundary conditions) can scale as O(L3). Recall
that our code has two types of qubits – horizontal qubits which live on horizontal planes,
and vertical qubits which live on vertical edges. We can establish the following theorem:

Proof. As we only consider Z errors, it suffices to work with classical parity-check operators
that detect Z errors rather than the full quantum stabilizers, using the map I 7→ 0, X 7→ 1,
Y 7→ 1, Z 7→ 0. The horizontal parity-check operators are all horizontal squares of the form
0110 while there are two types of vertical parity checks – 1111 and 0110; see Fig. 26. We
divide our proof into 3 distinct parts. In Part 1, we show that if a Z-logical has support in
a horizontal qubit, then it has support in the whole horizontal layer containing this qubit.
In Part 2, we show that if a Z-logical has support in a horizontal layer and L ≡ 1 or 2
mod 4, then it has support in all horizontal layers. Finally, we show in Part 3 that a
Z-logical cannot have support uniquely in vertical qubits. It shows that if L ≡ 1 or 2
mod 4, the minimum-weight logical is the one with all horizontal qubits activated.

(1) Let L be a pure-Z logical with a horizontal qubit in its support. We show that L is
supported on the whole horizontal layer containing this qubit. This problem reduces
to showing that there is always a weight-2 parity check between every pair of qubits
in a chosen layer. Indeed, if that is the case, it means that the parity of every pair of
qubit must be 0, which eliminate the possibility of layer not entirely composed of
0 or 1. To prove this, we notice that every diagonal line in the 2D coprime lattice
forms a parity check with a 1 at its boundary, as illustrated in Fig. 27a. Since the
lattice has coprime dimensions, there exists a diagonal line that go through all the
qubits before looping to itself. In particular, this line goes through every pair of
qubits, which achieves our proof.
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(2) If L ≡ 1 or 2 mod 4, it means that one of the direction contains 4k + 2 cells, for
some integer k ≥ 0. Consider a parity-check operator that consists of a product of
parity-check operators in a zig-zag fashion that wraps through the periodic boundaries
of the vertical qubit lattice, as shown in Fig. 27b. Such a chain would be made up
of 2k + 1 checks of type 1111 and 2k + 1 checks of type 0110. Their product is an
operator that has support on 2k + 1 horizontal qubits on the horizontal layer below
and 2k + 1 horizontal qubits on the horizontal layer above in an identical manner.
Recall from Part 1 that there exists a parity operator that acts on any two horizontal
qubits on the same layer. By composing this pair-wise parity check between every pair
of qubits on a layer, the layers can be removed pairwise, leaving only one remaining
qubit on that layer. The exact procedure can be applied to the other layer, resulting
in a parity-check operator that acts only on two qubits, one in each layer.
This provides a constraint that the Z-only logical must be the same between layers of
horizontal qubits. That is, either all horizontal qubits are I or all horizontal qubits
are Z.

(3) We show here that there cannot be a logical operator that has support only on vertical
edges. We first notice that there is only one logical qubit encoded in the Clifford-
deformed 3D rotated surface code. One pair of anti-commuting logical operators has
a string of horizontal qubits of the form XZXZ · · · , and a membrane of horizontal
qubits made of Y operators.
Since both the string and the membrane logical operators do not act on vertical
qubits, they would commute with an only-vertical operator. And since there is only
one logical qubit, such an operator cannot be a logical operator.

The operator that acts with Z on all horizontal qubits is a valid logical since it anticommutes
with the Y membrane logical and commutes with all the stabilizers. We showed that there
cannot be a pure-Z logical of lower weight that acts non-trivially on a horizontal qubit, or
that is supported only on vertical qubits. Therefore, the minimum weight Z-only logical is
one that acts as Z on all horizontal qubits.

Note that the proof fails if the even dimension is not 4k + 2 for some integer k, as the
constraint between layers (see Part 2) does not apply, in which case the scaling becomes
O(L2) instead.

5.3 Robustness of the Z-weight scaling
We note that, as in the 2D case [67], the above statement is not robust, in the sense that
allowing for a single X into our logical operator drops the effective scaling down from O(L3)
to O(L2). This can be seen in Fig. 28, where we present an example of a logical operator
that has O(1) Pauli Xs and Θ(L2) Pauli Zs.

However, we show that there is no string logical operator that contains O(L) Zs and
O(1) Xs as follows:

Theorem 7. In a 3D rotated surface code whose dimensions satisfy the assumptions of
Theorem 6, any logical operator containing O(1) Xs also contains Θ(L2) Zs.

Proof. To prove this theorem, we adopt the following strategy. We first show that if such
a logical operator exists, it must belong to the same coset as the logical string operator
that comes from the Clifford deformation of an X string logical operator. This logical
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(a) (b)

Figure 28: Example of membrane logical operator made of O(1) Xs and Θ(L2) Zs. (a) The membrane
can be obtained by starting from a string logical made of alternating Xs (red vertices) and Zs (blue
vertices), and applying stabilizers (highlighted in the figure) along the diagonal lines connecting pairs of
Xs. This has the effect of annihilating all the connected pairs of Xs, leaving only one unpaired X in
the logical operator, and a trail of Θ(L2) Zs. (b) Resulting membrane logical operator.

operator, which we call the XZ-string, by virtue of it having alternating X and Zs along
its length, is represented in Fig. 28a. We then derive all the transformations of this string,
through the application of stabilizers, that results in O(1) Xs on horizontal qubits. For
that, we show that this is equivalent to finding all the solutions of a matching problem on
a 2D lattice, and prove that all such solutions necessarily result in creating Θ(L2) Zs on
horizontal qubits.

Let us start by showing that our string logical operator must be logically equivalent
to the XZ-string. Since the XZ-string is free to move in 3D by application of stabilizer
generators, any other string logical operator must commute with at least one of its instances
by avoidance. Moreover, the 3D rotated surface code with the dimensions of Theorem 6
only encodes one qubit. Therefore, any other string logical operator must either be trivial
or logically equivalent to the XZ-string.

We now show that any logical operator equivalent to the XZ-string with O(1) Xs on
the horizontal qubits also has Θ(L2) Zs on the horizontal qubits. This statement, while
restricted on the horizontal qubits, implies the stronger result that requiring O(1) Xs on
both the horizontal and vertical qubits leads to the presence of Θ(L2) Zs in the operator.
Therefore, we ignore the vertical qubits in the rest of the proof.

The goal is now to show that, by applying stabilizers on the XZ-string, we can eliminate
all Xs except O(1) of them. To see how Xs can be moved and eliminated, let us focus on
the X part of the stabilizers. This corresponds to the parity-check operators of Fig. 26.
Since we choose to ignore the vertical qubits, we consider the restriction of these stabilizers
to the the horizontal qubits. The final restricted operators are all weight-2. We can
therefore represent all the horizontal qubits and stabilizers on a 2D lattice, constructed
by taking a diagonal slice of the 3D rotated surface code lattice that is vertical and runs
parallel to the line connecting a pair of Xs on a horizontal square stabilizer. Since the
code has coprime dimensions, there is only a single such diagonal slice on which all the
horizontal qubits sit. This 2D lattice is represented in Fig. 29a.

The problem can now be formulated as a matching problem on this 2D lattice. Indeed,
since the stabilizers have X-weight 2 restricted on horizontal qubits, the Xs can only be
annihilated in pairs, by applying a chain of stabilizers that connects the pair. Since we
allow O(1) Xs to remain in the logical operator, the more precise problem is to match all
but O(1) Xs. Any logical operators with O(1) Xs can then be seen as a different solution
to this matching problem.
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Figure 29: Proof that there is no string logical made of O(1) Xs and O(L) Zs. (a) All the horizontal
qubits can be placed on a long diagonal slice of size (Lx · Ly, Lz). Considering only Xs acting on
horizontal qubits, all stabilizers become 2-body terms. The lattice shown is the diagonal slice of a 3D
rotated surface code with dimensions (10, 3, 4). Horizontal qubits are represented as black vertices,
octahedron stabilizers as orange edges and face stabilizers as blue edges. The leftmost and rightmost
vertices are identified to represent periodic boundary conditions. The support of the XZ-string logical
operator is represented by red (X) and blue (Z) vertices. (b) Example of a matching solution for two
pairs of Xs belonging to the XZ-string logical operator. The purple edges represent the stabilizers used
in the matching solution. This results in eliminating all but one of the Xs (red), while introducing new
Zs (blue) on horizontal qubits located Ly + 1 vertices to the left and to the right of every horizontal
stabilizer used in the matching solution. Every column of horizontal stabilizers either has an odd or even
number used in the matching solution, which is its parity. All 2Ly − 1 columns of horizontal stabilizers
between any two neighboring Xs have the same parity, as annotated in purple. Adjacent sections have
different parities, except for the sections around unmatched Xs, which are instead of equal parity (the
two rightmost sections). As a result of this parity alternation, there are an odd number of Zs introduced
in every column of horizontal qubits, except in columns of horizontal qubits at the midpoint between
neighboring Xs, and the columns of horizontal qubits around unmatched Xs. Since there are only O(L)
such exceptions (boxed in orange), we deduce that Θ(L2) Zs have been introduced in the process.

The next step is to count how many Zs are created for each matching solution. When
applying a horizontal stabilizer, which is either an octahedron stabilizer or a horizontal
square stabilizer, two Zs are introduced on the horizontal qubits, located Ly + 1 vertices
to the left and to the right of the stabilizer as viewed on the 2D diagonal slice. Note
that additional Zs are also introduced on the vertical qubits for octahedron stabilizers.
An example of a matching solution with its introduced Zs is shown in Fig. 29b. To
count them, we note that any matching solution has an alternation of even-parity and
odd-parity sections, where a section is defined as the space between two original Xs, and
its parity is defined as the number of horizontal stabilizers applied on each column of the
section, modulo two. Since we can choose O(1) Xs that are not matched, this alternating
parity pattern breaks at these unmatched Xs, where either two even-parity sections or
two odd-parity sections follow one another. This can be seen on the rightmost sections of
Fig. 29b. However, since there are only O(1) unmatched Xs, the number of such breaks in
alternation is also O(1).

We can then use this last fact to prove that the number of Zs is Θ(L2). Indeed, the
number of Zs on a given column of horizontal qubits is, by construction, equal to the
number of stabilizers applied Ly + 1 columns to the left and to the right. Those two
columns of stabilizers are 2Ly − 1 edges apart, and since the size of a section is 2Ly edges,
they belong in different sections as long the column of Zs is not precisely in the middle of
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a section. Excluding these O(L) columns, as well as the O(L) columns located Ly edges
to the left and to the right of a parity-alternation breaking point, of which there are only
O(1), we can see that the number of Zs applied to a given column is equal to the sum
of the number of Zs in an odd-parity and in an even-parity section. Therefore, in Θ(L2)
columns, there is an odd number of Zs, where the number of Zs must be at least 1. The
logical operator therefore contains Θ(L2) Zs.

This theorem shows that under high dephasing bias, with a low number of X errors,
the subthreshold error rate scales as O(e−αL2), similarly to the original 3D rotated surface
code. However, the number of logical operators with a low number of Xs is expected to be
lower in the Clifford-deformed code, and we therefore expect the coefficient α to be higher.
This can be seen through the following heuristic argument. In any transformation of the
XZ-string considered in the proof of Theorem 7, applying a vertical stabilizer creates some
Xs on the vertical qubits. Those Xs cannot be eliminated through the application of other
stabilizers, so vertical stabilizers necessarily increase the number of Xs in the operator.
In order to keep only one X in our operator, the matching must therefore be performed
on the horizontal plane. But, for a fixed choice of which X to keep, there are only two
possible matching solutions confined to the plane. By moving the remaining X on the
plane, or choosing different planes, we can deduce that the number of membrane operators
with a single X scales as Θ(L3). This can be compared to the original 3D rotated surface
code, where the number of such logical operators scales exponentially in the system size.
This reasoning can be generalized to logical operators containing O(1) Xs. When more
than one X is present, each logical operator is characterized by the planes in which the
Xs are supported, and the positions of these Xs within these planes. This is due to the
confinement property discussed for the case of a single X. The number of such choices still
scales polynomially with the system size, and hence remains an exponential improvement
compared to the original code.

6 Discussion
In this work, we presented Clifford deformations of many 3D topological codes with high
quantum memory threshold error rates for biased Pauli noise. One important question
following our study is whether it is always possible to design a Clifford deformation of a
topological stabilizer code such that there exists a decoding strategy with 50% threshold
error rate at infinitely biased noise. On the basis of the wide range of examples we present
in this work, we conjecture that this is true. We also presented a rotated layout of the
surface code for which choosing appropriate dimensions and boundary conditions leads
to a subthreshold scaling of exp{−O(n)}, for infinitely biased noise. We showed that in
the regime of large finite bias, which we model as the presence of O(1) X errors, this
subthreshold scaling becomes exp

{
−O(L2)

}
. It would be interesting to consider how such

geometrical optimizations can improve the code performance for other 3D codes such as
the 3D color code.

Families of random Clifford-deformed surface codes in two dimensions have been shown
to exhibit high threshold error rates and subthreshold scaling better than XZZX and XY
surface codes [8]. The performance of the random codes at infinite bias can be intuitively
explained via a mapping to percolation problems. One could consider random Clifford-
deformed 3D surface codes and color codes for which we expect a similar mapping to
percolation problems and a phase diagram containing a phase of 50% threshold error rate
analogous to the random Clifford-deformed surface codes in 2D. It would be also interesting
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to study how random Clifford deformations affect the memory performance of fracton codes
at infinite bias, which have intrinsically rigid logical operators irrespective of the bias.

A natural next step is to extend the code capacity results in our work to the phe-
nomenological fault-tolerant scenario as well as the more realistic circuit-level scenario. In
the circuit-level scenario, it becomes important to use bias-preserving gates to maintain
the performance advantage found for biased noise.

In three dimensions, surface codes have been defined on fractal lattices with Hausdorff
dimension DH = 2 + ϵ [28, 29]. Our Clifford deformation of the 3D surface code naturally
applies to such fractal surface codes that can be created by punching holes in the 3D
surface code.

Code availability The source code for the numerical simulations of the quantum error
correcting codes, noise models and decoders described in this paper are publicly available
on a GitHub repository at github.com/panqec/panqec. This is the source code repository
for the PanQEC Python package (pronounced “pancake”). The vision for PanQEC is to
be a collection of quantum error correcting codes, noise models and decoders, which are
amenable to numerical simulation and interactive three-dimensional visualization. Pan-
QEC’s documentation is available at panqec.readthedocs.io, which also includes tutorials
on usage. Furthermore, an online demonstration of its 3D visualization capabilities are
available at gui.quantumcodes.io.
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A Proof of 50% threshold for the 3D surface code on the checkerboard
lattice

We presented a Clifford deformation of the checkerboard lattice surface code which consists
of applying a Hadamard operation on half of the vertical qubits, in a three-dimensional
checkerboard manner (see Fig. 7a). For this Clifford-deformed code, cube stabilizer genera-
tors are violated under Z errors on the Clifford-deformed edges, while the triangle stabilizer
generators are violated by Z errors on the remaining edges. Using this fact, one can show
that the products of cubes and the products of triangles along the diagonals of the code
are effectively identity for pure Z errors. The presence of these linear symmetries gives
rise to the following theorem:

Theorem 8. The Clifford-deformed checkerboard lattice surface code has a 50% threshold
error rate under pure Z noise

Proof. The Clifford deformation we consider for the checkerboard lattice surface code
consists of applying a Hadamard on half of the vertical qubits, in a 3D checkerboard fashion
(see Fig. 7a). In this new code, under pure Z noise, cube stabilizers can only be excited by
errors acting on the Clifford-deformed qubits, while triangle stabilizers can be excited by
any of the remaining qubits. We now show that this code has a 50% threshold error rate
under pure Z noise.

We start by decoding the cube stabilizers. Due to the Clifford deformation, these
stabilizers are now effectively weight-2 at infinite bias, and are involved in some linear
symmetries represented in Fig. 30a. We can therefore decode the cubes by performing
matching along each symmetry line.

We then tackle the triangle stabilizers. To decode them, we can perform matching
along the two linear symmetries represented in Figs. 30b and 30c. One symmetry allows
us to decode all the remaining vertical qubits, and the other all the horizontal qubits.

Since all the steps involve decoding a polynomial number of repetition codes (in the
lattice size L), and the probability of success is lower-bounded by the probability of correctly
decoding all these repetition codes, it shows that this decoding strategy leads to 50%
threshold error rate.

B Decoders
B.1 BP-OSD
The belief propagation with ordered statistics decoder (BP-OSD) is a generic decoder for
quantum LDPC codes. Based on a classical technique to improve the iterative decoding of
linear codes [68, 69], it was introduced to the quantum domain by Panteleev and Kalachev
[48] and has been shown to have high performance on a large class of LDPC codes, including
topological codes [21, 49]. BP-OSD is built from two components: the belief propagation
(BP) algorithm, which estimates the probability for each qubit to have an error, and the
ordered statistics decoder (OSD), which takes these probabilities as input and proposes
a correction that fits the syndrome. It is particularly well-adapted to the decoding of
Clifford-deformed codes under biased noise, as it naturally takes into account the non-
uniform probability of errors along the different axes in the Clifford-deformed noise model.
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(a)

(b) (c)

Figure 30: Linear symmetries of the checkerboard lattice surface code. (a) Symmetry of the cube
stabilizers. Due to the Clifford deformation, the cube stabilizers become weight-2 and are supported on
two diagonally-opposite edges (red). Multiplying cubes diagonally effectively gives the identity. Matching
along this line allows us to decode all the Clifford-deformed vertical qubits. (b) Symmetry of the triangle
stabilizers involving vertical qubits only. The product of four triangle stabilizers within a cube gives
a four-body stabilizer supported on the four vertical qubits of the cube (blue and red). Due to the
Clifford deformation, this becomes a two-body term, supported on two diagonally opposite qubits (blue).
Multiplying these weight-2 stabilizers on a diagonal line (purple) gives the identity. Matching along all
such lines allows to decode all the undeformed vertical qubits. (c) Symmetry of the triangle stabilizers
involving horizontal qubits only. The triangles containing a Clifford-deformed qubit become two-body
terms after applying the Clifford deformation. Multiplying them along a line (purple) gives the identity.
All the other horizontal qubits of the cube are involved in a similar symmetry. Matching along all these
symmetries allows to decode all the horizontal qubits of the code.

Belief propagation The belief propagation decoder is one of the most commonly used
decoders for classical LDPC codes [70]. It is an inference algorithm that computes an
approximation of the probabilities P (ei|s) that an error has occurred on each bit i given
a syndrome s. A correction operator is then applied to all the bits i such that P (ei|s) >
0.5. While computing this marginal probability involves in principle summing over an
exponential number of terms, belief propagation exploits the fact that for LDPC codes,
this sum can be factored into a small number of terms. It then uses an algorithm called
the product-sum algorithm (or its variant the min-sum algorithm) to calculate this sum, by
iteratively passing messages between parity checks and data bits. Belief propagation can
be shown to converge to the exact marginal distribution when the Tanner graph is a tree.
For more general Tanner graphs that can contain loops, it is used as a heuristic algorithm
to approximate the distribution, and is sometimes called loopy belief propagation. While
the approximation is often acceptable when the girth 4 of the graph is large, the presence
of short-cycles tends to be detrimental to the performance of BP [70, 71].

Several methods have been proposed in the literature to generalize belief propagation
to quantum codes [49, 72–77]. For instance, one can decode X and Z errors separately
using the classical version of BP. The potential correlations between X and Z errors can
be taken into account by first decoding X errors, adjusting the channel probabilities based
on the correction, and decoding Z errors with this adjusted probability, as proposed in
Ref. [75]. It has also been proposed to send vector instead of scalar messages, to compute

4The girth of a graph is the size of its shortest cycle.
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Figure 31: Illustration of the BP-OSD decoder on a 2D surface code. (a) The belief propagation
algorithm takes as input a syndrome s (yellow dots) and an error model, and computes a probability
P (ei|s) of error on each individual qubit (red squares). When the solution is degenerate (e.g. two chains
of errors have minimal weight), a high probability (0.9 shown in figure) is assigned to all the solutions.
(b) Split-belief phenomenon. In the basic version of belief propagation, a correction operator (red edges)
is applied to all qubits i having P (ei|s) > 0.5. In degenerate cases, it can produce an invalid correction
with some defects remaining. The OSD algorithm consists of solving the parity-check equation He = s
for the most probable set of errors, as found by belief propagation, guaranteeing that the final corrected
state lives in the codespace.

the probability P (ei = W |s) that a Pauli error W ∈ {I, X, Y, Z} has occurred on each
qubit i [73]. However, this results in an increase in complexity compared to the original
BP algorithm, and sometimes reduced performance due to the presence of shorter cycles in
the whole Tanner graph compared to the X and Z ones. A simplified message-passing rule
was proposed in Ref. [78] to reduce this complexity while guaranteeing the same output
as the original version, but the presence of short cycles is still hindering its performance.
In this work, we chose to decode X and Z errors separately.

Apart from the presence of short cycles in quantum Tanner graphs, a major problem
with BP decoding of quantum codes is the degeneracy problem, also called split-belief
phenomenon [73]. Indeed, in quantum codes, a syndrome can often be generated by several
equally likely combinations of errors. By symmetry, the BP algorithm outputs the same
probability for all these errors, and if they are all higher than 0.5, it applies a correction
operator to all these equally likely errors, resulting in an invalid correction that does not
fit the syndrome. An illustration of a split-belief problem is shown in Fig. 31.

To mitigate the degeneracy problem, several solutions have been proposed in the liter-
ature, such as breaking the degeneracy with random noise [73], adjusting the error prob-
abilities when the decoder fails [77], using a neural network to learn the BP procedure,
with a loss function tailored to avoid degeneracies [79], using previous messages in the
message-passing update rule [76], or complementing the BP decoder with a second decoder
such as the ordered statistics decoder (OSD) [49]. Since OSD has recently been shown to
outperform other methods for many different codes [48], we are using this solution in our
work.

Ordered statistics decoding For any classical linear code with a parity-check matrix
H, the following equation, called the syndrome equation, holds:

He = s (15)
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Since many errors can correspond to a given syndrome, H is not directly invertible. The
idea of OSD is to only solve the system for the most-likely errors, as given by the BP
algorithm. More precisely, we sort the columns of H by increasing probability of error, and
eliminate them one-by-one in that order until the system is full-rank. We then solve the
reduced system to find a set of errors that respect the syndrome equation. The remaining
qubits can either be set to have no error, or be searched-over for a better correction using
some heuristics [48, 49].

In the quantum setting, a similar syndrome equation holds, where the parity-check
matrix and the error vector can either be written over the field GF (4) or in a symplectic
form. For CSS codes, we can also consider X and Z errors separately and write a syndrome
equation for each of them:

HZeX = sZ (16a)
HXeZ = sX (16b)

A classical OSD algorithm can then be applied separately for each equation.
In this work, we use BP-OSD through the Python library bposd developed by J. Roffe

[80]. In particular, we use the min-sum algorithm for BP and the combination sweep
strategy (to order 50) described in Ref. [49] to search over the remaining errors in OSD.

Limitations of BP-OSD While OSD turns the output of BP into a valid correction,
the algorithm still suffers from the main drawbacks of loopy belief propagation discussed,
such as short cycles and error degeneracies. For instance, the effect of short cycles can
be seen when decoding long strings on the 2D surface code. When the size of a string is
higher than 8 (the girth of the surface code when considering X and Z errors separately),
short cycles tend to deteriorate the messages passed between the two distant defects. This
phenomenon, called bounded information spread, has been documented in the literature for
the 2D surface and color codes [22]. As a result, decoding topological codes of large sizes
is often harder for BP-OSD than for small sizes. This can be observed in some threshold
error rate plots where the apparent threshold error rate seems to shrink when increasing
the system size. Therefore, finite-size approximations of the BP-OSD threshold error rate
might not reflect the true threshold error rate, obtained when taking the system size to
infinity. Examples of this finite-size effect on 3D codes are given in Section 4.

Apart from short cycles, error degeneracies can also have a negative effect on BP-OSD.
In general, split-belief problems appear around stabilizers with even weight. Indeed, any
error supported on half of an even-weight stabilizer gives the same syndrome after the
application of the stabilizer, while the new error has the same weight. This argument
has been used to explain why BP-OSD performs poorly on the 2D surface code, while
performing well on the 3D surface code, observing that the smallest split-belief appears
for weight-2 errors on the 2D surface code, but on weight-3 errors on the loop sector of
the 3D surface code [22]. We call the size of the smallest error that causes a split-belief
the split-belief number of the code. It can be calculated by taking the smallest even-weight
stabilizer and dividing by two. Examples of split-belief numbers for different 3D codes are
given in Table 1.

B.2 Sweep-matching decoder
The sweep-matching decoder on the CSS 3D surface code uses minimum weight perfect
matching (MWPM) [42, 81, 82] between vertices to correct for point-like syndromes and the
Sweep decoder [19, 20] over face syndromes to correct for string-like syndromes. The two
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sectors are decoded independently and the procedure can be generalized for the Clifford-
deformed code by using the Clifford-deformed stabilizer generators instead.

Implementations of MWPM are easily applicable in 3D for the Clifford-deformed code
and for biased noise by adjusting the graph weights of the match to match the known noise
parameters. In this work, the Python library PyMatching [83, 84] is used for fast MWPM.
The sweep decoder is a local cellular automaton decoder, meaning that it is an iterative

Figure 32: The greedy sweep rule as applied to a single cell. The top figures enumerate the four possible
non-trivial initial syndrome configurations on the 3 faces of a cell adjoining the vertex that is furthest
from the sweep direction, where faces with nontrivial syndromes are shaded yellow. The corresponding
corrections are shown in the figures below, where the Z edge operator to be applied as a correction is
shown in blue and the corresponding syndromes to be flipped and updated are shaded yellow. In the
right-most initial configuration where non-trivial syndromes are on all 3 faces, the correction to apply is
chosen randomly out of the 3 possible corrections. This rule is greedily applied to all cells at once and
repeated Tmax times.

algorithm where, at each step, a correction operator is computed locally according to the
current syndrome using a cellular automaton rule. To be of use, such a decoder should be
able to eliminate every syndrome after a number of steps that is polynomial in the size of
the code.

The sweep decoder is based on a cellular automaton called the sweep rule [19]. We now
briefly review the sweep rule in the special case of the simple cubic lattice. We start by
choosing a spatial direction, defined by a 3D vector v⃗, called the sweep direction, with the
only condition that it is not parallel to an edge of the lattice. In practice we choose the
sweep direction from one of eight possibilities (±1, ±1, ±1). As illustrated in Fig. 32, we
then apply the following rule at each iteration, simultaneously for all the vertices:

1. Find the three oriented lattice edges, e⃗1, e⃗2 and e⃗3, pointing away from the vertex and
in the same direction as v⃗, i.e., such that e⃗i · v⃗ > 0. Each pair of edges corresponds
to a face of the lattice.

2. If two of these faces are excited, then apply a Z operator to the intersecting edge. If
all three faces are excited, then apply a Z operator to a random edge among e⃗1, e⃗2,
and e⃗3. Otherwise, do nothing.

In the sweep decoder, we apply the sweep rule Tmax = O(L) times, where L is the linear
lattice size. For lattices with boundaries we run the decoder multiple times using different
sweep directions, as described in [20]. The sweep decoder can fail in two ways: either if the
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product of the original error and the operators applied by the sweep rule is a non-trivial
logical operator, or if the syndrome is non-trivial after Tmax applications of the rule.

We implemented the sweep-matching decoder and simulated its performance for 3D
surface codes defined on cubic lattices, with and without boundaries. The code is available
online5.

C Numerical simulation details
To compute the threshold error rate of the different codes, we simulate up to ntrials = 10, 000
trials for each physical error rate p and for each lattice size L. Values of p were taken in
intervals between 0 and 0.5, with a maximum step size of 0.01, while lattice sizes were
chosen to be greater than L = 9 and up to L = 21, using at least 3 values of L for each p.
We extract the threshold error rate from crossover plots using a common finite-size scaling
regression analysis [42, 85, 86]. The logical error simulation data is fitted to the following
ansatz for the physical error rate pL(p, L) as a function of the physical error rate p and
system size L.

pL = A + Bx + Cx2, (17)
x = (p − pth)L1/ν , (18)

where pth is the threshold error rate we seek to evaluate, ν is a critical exponent and,
A, B, C are coefficients of the quadratic ansatz, all of which are free parameters to be
determined by fitting to the data. Here x is termed the rescaled physical error rate, which
is zero at the phase transition p = pth. That pL is a quadratic function of x is only
expected to be a valid approximation near this phase transition for x, so only data points
with physical error rates close to the phase transition were used for the fitting.

For each given physical error rate p and system size L, suppose that nfail trials out of
ntrials trials result in a logical error after running the numerical simulations of sampling
the noise model, syndrome extraction and decoding. The logical error rate can then be
estimated by pL = nfail/ntrials.

Using these estimated logical error rates, we run an optimization procedure to obtain
the set of free parameters (pth, ν, A, B, C) that fits the data the best, as measured by
minimizing the mean-squared error.

Uncertainties for the threshold error rate estimate pth are calculated using the following
bootstrap resampling method.

The first step is to obtain a distribution to sample for estimates of the logical error
rate pL for each (p, L) to account for the finite number of trials ntrials. Starting from a
uniform prior distribution before taking into account the number of trials and failures, the
posterior distribution for pL is a Beta distribution with

pL ∼ Beta (ntrials − nfail + 1, nfail + 1) , (19)

where Beta(a, b) is a probability distribution with support over the interval [0, 1] and
probability density function

f(x; a, b) = Γ (a + b) xa−1(1 − x)b−1

Γ (a) Γ (b) (20)

5See the repository at https://github.com/panqec/panqec for the implementation of the sweep-
matching decoder.
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Figure 33: (left) Total logical error rate pL vs the physical error rate p for Z-biased noise with η = 30
decoded with the sweep-matching decoder. (right) Data collapse onto the quadratic finite-size-scaling
ansatz with bootstrapped error bars and 1σ fit bounds.

for real parameters a, b. Here, Γ is the Gamma function with the property that Γ(n) =
(n−1)!. Thus the logical error rates pL(p, L) for each p and L can be sampled independently
from these posterior distributions to produce a resampled set of pL values to use for fitting.
The second step is to reflect the uncertainty that arises from the choice of data points,
which may be done by resampling with replacement the set of (p, L) pairs to use.

With these two sources of uncertainty accounted for by resampling nbs = 100 times, the
least-squares fit of pL(p, L) can be done repeatedly on the resampled data to produce a set
of nbs best-fit parameters {(pth, ν, A, B, C)} for each resampling. This collection of best-fit
parameters can be used to produce error bars on the threshold error rate pth by taking the
1σ-bounds of the resampled threshold error rate estimates to be interpreted as a credible
interval. Note that these uncertainty bounds need not be symmetrical in upper and lower
directions, as seen in Tables 2 to 4. An example of this fitting is shown in Fig. 33, with
the bootstrapped uncertainty estimates shown pink and the best-fit value of pth marked
with the red dashed vertical line. The validity of the ansatz may be vindicated by visual
inspection of the so-called data collapse plot of the logical error rate pL over the rescaled
physical error rate x = (p − pth)L1/ν where all data points collapse onto the fit line per the
quadratic ansatz in Eq. (17) to within reasonable bounds, as quantified by the 1σ envelope
above and below the fit line. This ensures that the data points chosen for the finite-size
scaling were chosen sufficiently close to the critical point such that the ansatz is valid.

To verify the reliability of the estimated threshold error rates, the average X and Z
logical failure rate over every logical qubit is used as the logical error rate and subjected
to the same analysis to extract corresponding threshold error rates. This is important
since, due to finite-size effects, the apparent threshold error rate as determined by the
total logical error rate may be higher than the threshold error rates determined by the
logical X and Z error rates. For the case of the X-cube model where the number of logical
operators increases with the code distance, the logical X error rate is determined by taking
the average logical X error rate over all logical qubits. The logical Z error rate is calculated
analogously.

We use this procedure to compute the threshold error rate of both the CSS and Clifford-
deformed codes, for bias ratios ηZ ∈ {0.5, 1, 3, 10, 30, 100, ∞}, sampling more where inter-
esting features are to be elucidated. Representative examples of crossover plots of the
logical error rate over physical error rate along with the ansatz-fitting for both X and Z
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Figure 34: Examples of data collapse plots in terms of logical X and Z errors for the 3D surface code
under Z-biased noise with ηZ = 30 and decoding by sweep-matching. Note that these are the same
parameters as those in Fig. 33, but the minimum threshold error rate is slightly lower than that estimated
using the total error rate in Fig. 33 and is thus a more conservative estimate.

logical errors are separately given in Fig. 34.
The above procedure produces best-fit estimates and credible intervals for the threshold

error rate pth with respect to the total logical error rate, logical X errors and logical Z
errors, which may differ significantly. To be conservative, the reported threshold error rate
is the minimum of these estimates, as determined by which 1σ (68% equal-tail) credible
interval has the lowest lower bound.
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